扩展BSGS算法

先来康康这个问题。
给定三个正整数 A , B , P A,B,P A,B,P,求关于 x x x的方程的最小正整数解:
A x ≡ B ( m o d   P ) A^x\equiv B(mod\ P) AxB(mod P)
我们令 x = a ⌈ P ⌉ − b , a ∈ N , b ∈ N x=a\lceil \sqrt{P}\rceil-b,a \in N,b \in N x=aP b,aN,bN
由欧拉定理:
A ϕ ( P ) ≡ 1 ( m o d   P ) A^{\phi(P)} \equiv 1(mod\ P) Aϕ(P)1(mod P)
对同余方程变形:
A ϕ ( P ) + x ≡ A x ( m o d   P ) ⟺ A x ≡ A x ( m o d   P ) A^{\phi(P)+x} \equiv A^x(mod\ P) \Longleftrightarrow A^x\equiv A^x(mod\ P) Aϕ(P)+xAx(mod P)AxAx(mod P)
所以说,我们只需要考虑 [ 1 , ϕ ( P ) ] [1, \phi(P)] [1,ϕ(P)]之间的解即可。
∵ \because i i i为质数时, ϕ ( i ) = i − 1 \phi(i)=i-1 ϕ(i)=i1
∴ i − 1 ≤ ϕ ( i ) \therefore i-1\leq \phi(i) i1ϕ(i)
这样,我们只需考虑 [ 1 , P − 1 ] [1,P-1] [1,P1]之间的解。
只需令 a ∈ [ 1 , ⌈ P ⌉ ] , b ∈ [ 0 , ⌈ P ⌉ ) a \in [1, \lceil \sqrt{P}\rceil],b\in[0,\lceil\sqrt{P}\rceil) a[1,P ],b[0,P ),即可使 a ⌈ P ⌉ − b a\lceil\sqrt{P}\rceil-b aP b能取遍 [ 1 , P − 1 ] [1,P-1] [1,P1]中的每一个整数。
然后,对原方程变形:
A a ⌈ P ⌉ ≡ B ⋅ A b ( m o d   P ) A^{a\lceil \sqrt{P}\rceil} \equiv B \cdot A^b(mod\ P) AaP BAb(mod P)
由于方程左右两端最多有 ⌈ P ⌉ \lceil \sqrt{P}\rceil P 个值,所以我们可以把一边的值都算出来,存在一个哈希表中,然后再拿另一边的值去查找是否有相等的值。若有,则返回;否则无解。
上面的方法就是今天想介绍的BSGS(拔山盖世)算法。


但是,我们注意到一个细节,就是在这个地方:
A a ⌈ P ⌉ − b ≡ B ( m o d   P ) A^{a\lceil \sqrt{P}\rceil-b} \equiv B(mod\ P) AaP bB(mod P)
我们发现,这个式子成立,需要保证 A b A^b Ab在模 P P P意义下的逆元存在,但是,当 g c d ( A , P ) ≠ 1 gcd(A,P) \neq 1 gcd(A,P)=1时,它没有逆元。
欧几里得的定理告诉我们:
A x ≡ B ( m o d   P ) ⟺ A ∗ A x − 1 + k P = B , k ∈ Z A^x \equiv B(mod\ P) \Longleftrightarrow A*A^{x-1}+kP=B,k \in \Zeta AxB(mod P)AAx1+kP=BkZ
我们可以多次将系数 A A A, B B B, P P P除以 g c d ( A , P ) gcd(A,P) gcd(A,P)。显然,当 B ∤ g c d ( A , P ) B \nmid gcd(A,P) Bgcd(A,P)时,原方程无解。
假设上面的过程反复进行了 d d d次,系数 A A A, B B B, P P P分别变为 A ′ A' A, B ′ B' B, P ′ P' P
则有:
A ′ ∗ A x − d − 1 + k P ′ = B ′ ⟺ A x − d − 1 ≡ B ′ ∗ A ′ − 1 ( m o d   p ) A'*A^{x-d-1}+kP'=B' \Longleftrightarrow A^{x-d-1} \equiv B'*A'^{-1}(mod\ p) AAxd1+kP=BAxd1BA1(mod p)
然后套用上面的方法即可。这就是扩展BSGS(更加的拔山盖世)(大雾)算法。


下面是一道例题:
【BZOJ 2480 & SPOJ 3105】Mod
已知数a,p,b,求满足 a x ≡ b ( m o d   p ) a^x≡b(mod\ p) axb(mod p)的最小自然数x。
一道裸题:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
map<int, int> h;
int gcd(int a, int b) {return b ? gcd(b, a % b) : a;}
inline ll ksm(ll a, ll b, ll mod)
{
    ll ret = 1, h = a;
    while(b)
    {
        if(b & 1)
            ret *= h, ret %= mod;
        h *= h, h %= mod, b >>= 1;
    }
    return ret;
}
inline int exbsgs(int a, int b, int p)
{
    a %= p, b %= p;
    if(b == 1) return 0; 										//特判2
    int g, d = 0;
    ll c = 1;
    while((g = gcd(a, p)) > 1)
    {
        if(b % g) return -1;
        b /= g, p /= g, c = c * (a / g) % p, ++d;
        if(c == b) return d; 						//特判3(其实等价于特判2)
    }
    h.clear();
    int t = int(sqrt(p * 1.0) + 1);
    ll base = b;									//计算右半部分的值
    for(int i = 0; i < t; i++)
        h[base] = i, base = base * a % p;
    base = ksm(a, t, p); 							//用左半边的值验证
    ll now = c;
    for(int i = 1; i <= t + 1; i++)
    {
        now = now * base % p;
        if(h.count(now))
            return i * t - h[now] + d;				//返回解
    }
    return -1;										//无解
}
int main()
{
    int a, b, p;
    while(~scanf("%d%d%d", &a, &p, &b) && a && b && p)
    {
        if(p == 1) {puts("0"); continue;} 			//特判1
        int ans = exbsgs(a, b, p);
        if(ans == -1) puts("No Solution");
        else printf("%d\n", ans);
    }
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值