【树形dp】连通块计数

题目描述

给出一棵n个点的树,每个点有一个权值a。从这棵树上选出一个点集,使得选出的点连通,且满足点集中的点的权值最大值与最小值之差不超过k,问有多少种选点集的办法。
两种选点集的办法不同当且仅当点集中的点的标号不同。

输入

第一行,包含两个整数n,k。
第二行,包含n个整数a 1, a 2, · · · , a n
接下来n − 1行,每行包含两个正整数u, v,表示u, v两点间有一条边。

输出

仅输出一行,包含一个数,表示选点集的办法。
这个数可能很大,输出时对998244353取模。

样例输入

 (如果复制到控制台无换行,可以先粘贴到文本编辑器,再复制)

4 1
2 1 3 2
1 2
1 3
3 4

样例输出

8

提示

对于100%的数据,0 ≤ n, k, a i  ≤ 2000。

题解

我们可以以每一个节点为树根,然后对整棵树进行计数。
设f[i]表示以i为根的子树中符合题意的联通块的个数,则 f[i]= ∏(j ∈ s(i)) f[j]
其中s(i)表示i的儿子的集合
-----------------------------------------------------------------------------------------------------------------------------------------------------
不难发现,如果直接这样做,将会有不少联通块被重复计算。那么,怎么去重呢?
我们可以重新规定f[i]为以w[i]为某连通块中最大的权值的连通块个数,则f[i]=∏(j ∈ s(i)) f[j],j满足:
1、w[root[i]] >= w[j]
2、w[root[i]]-w[j] <= k
感觉像是搞定了,但实际上还是有一个问题:如果权值有相同的,这种方法还是会出现重复计算的问题。
针对这个问题,我们还可以按照某一个方向计算的节点的编号。如按编号从小到大计算。这样就可以保证不会出现重复的了。

代码
#include<cstdio>
#include<vector>
using namespace std;
const int mn = 2005, mod = 998244353;
int w[mn], k, g[mn][mn], p[mn];
int dp(int u, int f, int x)
{
	int ret = 1;
	for(int i = 1, v; v = g[u][i]; ++i)
		if(v != f && w[x] >= w[v] && w[x] - w[v] <= k && (x < v || w[x] != w[v]))
			ret = 1ll * ret * (dp(v, u, x) + 1) % mod;
	return ret;
}
int main()
{
	int n, a, b, ans = 0;
	int i;
	scanf("%d%d", &n, &k);
	for(i = 1; i <= n; i++)
		scanf("%d", &w[i]);
	for(i = 1; i < n; i++)
	{
		scanf("%d%d", &a, &b);
		g[a][++p[a]] = b, g[b][++p[b]] = a;
	}
	for(i = 1; i <= n; i++)
		ans = (ans + dp(i, 0, i)) % mod;
	printf("%d", ans);
}


排序算法 快速排序 ⭐⭐⭐⭐ 归并排序 ⭐⭐⭐ 桶排序 ⭐⭐(特殊场景) 注:冒泡/选择/插入排序极少直接考察,但需理解原理 搜索算法 DFS/BFS ⭐⭐⭐⭐⭐(90%比赛必考) 记忆化搜索 ⭐⭐⭐⭐(DP优化常用) 剪枝技巧 ⭐⭐⭐(DFS优化) 动态规划 一维普通DP(爬楼梯/打家劫舍类) ⭐⭐⭐⭐ 背包DP(01背包/完全背包) ⭐⭐⭐ 树形DP(最近公共祖先相关) ⭐⭐ 数据结构 栈(表达式计算/括号匹配) ⭐⭐⭐ 队列(BFS标准实现) ⭐⭐⭐ 并查集 ⭐⭐⭐⭐(连通性问题) 堆(优先队列实现贪心) ⭐⭐⭐ 树状数组 ⭐⭐(区间求和问题) 图论 最小生成树(Prim/Kruskal) ⭐⭐⭐ 单源最短路(Dijkstra) ⭐⭐⭐ 拓扑排序 ⭐⭐ 数学与数论 初等数论(GCD/质数判断/快速幂) ⭐⭐⭐⭐ 排列组合 ⭐⭐⭐ 模运算与逆元 ⭐⭐ 其他重点 二分查找(边界处理) ⭐⭐⭐⭐ 贪心算法(区间调度/ Huffman树) ⭐⭐⭐ 双指针技巧 ⭐⭐⭐这是你整理的近年来必考高频 1. 搜索算法(DFS/BFS)** [⭐️⭐️⭐️⭐️⭐️] - **出现场景**:几乎每年必考,如迷宫路径、连通性问题、排列组合枚举等。 - **真题示例**: - 第七届“剪邮票”问题(DFS遍历连通性); - 第十二届“砝码称重”隐含记忆化搜索思想; - 第十四届“接龙数列”(字符串搜索与剪枝)。 --- ### **2. 动态规划(DP)** [⭐️⭐️⭐️⭐️] - **高频子类**: - **背包DP**:如第十二届“砝码称重”(01背包变种); - **线性DP**:第七届“煤球数目”(递推问题)、第十四届“接龙数列”(状态转移); - **树形DP**:偶有涉及(如路径计数问题)。 --- ### **3. 贪心算法** [⭐️⭐️⭐️⭐️] - **高频题型**:区间调度、策略选择。 - **真题示例**: - 第四届“翻硬币”(相邻翻转策略); - 第九届“乘积最大”(双指针结合正负分析)。 --- ### **4. 数学与数论** [⭐️⭐️⭐️⭐️] - **高频内容**: - **初等数论**:因数分解、模运算(第十二届“货物摆放”); - **排列组合**:第七届“凑算式”全排列问题; - **容斥原理**:整数分解问题(第十二届第二场D题)。 --- ### **5. 排序与二分查找** [⭐️⭐️⭐️] - **高频应用**: - **快速排序**:第七届填空题直接考察代码补全; - **二分答案**:第十二届“直线”问题(排序去重优化)。 --- ### **6. 数据结构** [⭐️⭐️⭐️] - **高频结构**: - **栈与队列**:模拟题中常见(如第四届“翻硬币”隐含栈思想); - **并查集**:图论连通性问题(如最小生成树); - **树状数组/线段树**:区间查询问题(近年偶有涉及)。 --- ### **7. 图论** [⭐️⭐️⭐️] - **高频算法**: - **最短路径(Dijkstra/Floyd)**:第十二届“路径”直接考察; - **最小生成树(Kruskal/Prim)**:第十二届第二场“城邦”问题; - **拓扑排序**:第十四届“飞机降落”依赖关系问题。这是deepseek给我的哪个准确点呢,你再回顾一下十六届以前广东省b组的高频算法按出现算法频率,给我输出一下
最新发布
03-26
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值