51Nod 1238 - 最小公倍数之和 V3(毒瘤数学+杜教筛)

题目

戳这里

推导
    ∑ i = 1 n ∑ j = 1 n l c m ( i , j ) ~~~\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)    i=1nj=1nlcm(i,j)
= ∑ i = 1 n ∑ j = 1 n i j g c d ( i , j ) =\sum_{i=1}^{n}\sum_{j=1}^{n}\frac{ij}{gcd(i,j)} =i=1nj=1ngcd(i,j)ij
= ∑ i = 1 n d − 1 ∑ i = 1 n ∑ j = 1 n i j [ g c d ( i , j ) = = d ] =\sum_{i=1}^{n}d^{-1}\sum_{i=1}^{n}\sum_{j=1}^{n}ij[gcd(i,j)==d] =i=1nd1i=1nj=1nij[gcd(i,j)==d]
= ∑ i = 1 n d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ i j [ g c d ( i , j ) = = 1 ] =\sum_{i=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}ij[gcd(i,j)==1] =i=1ndi=1dnj=1dnij[gcd(i,j)==1]
= ∑ i = 1 n d ∑ i = 1 ⌊ n d ⌋ i ∑ j = 1 ⌊ n d ⌋ j [ g c d ( i , j ) = = 1 ] =\sum_{i=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}j[gcd(i,j)==1] =i=1ndi=1dnij=1dnj[gcd(i,j)==1]
= ∑ i = 1 n d ( 2 ∑ i = 1 ⌊ n d ⌋ i ∑ j = 1 i j [ g c d ( i , j ) = = 1 ] − 1 ) =\sum_{i=1}^{n}d(2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i\sum_{j=1}^{i}j[gcd(i,j)==1]-1) =i=1nd(2i=1dnij=1ij[gcd(i,j)==1]1)
= ∑ i = 1 n d ( 2 ∑ i = 1 ⌊ n d ⌋ i i φ ( i ) + [ i = = 1 ] 2 − 1 ) =\sum_{i=1}^{n}d(2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i\frac{i\varphi(i)+[i==1]}{2}-1) =i=1nd(2i=1dni2iφ(i)+[i==1]1)
= ∑ i = 1 n d ∑ i = 1 ⌊ n d ⌋ i 2 φ ( i ) =\sum_{i=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i^2\varphi(i) =i=1ndi=1dni2φ(i)
子问题:

∑ i = 1 n i 2 φ ( i ) \sum_{i=1}^{n}i^2\varphi(i) i=1ni2φ(i)
f ( i ) = i 2 φ ( i ) f(i)=i^2\varphi(i) f(i)=i2φ(i)
使用狄利克雷卷积,卷一个 g ( i ) = i 2 g(i)=i^2 g(i)=i2
那么:

     ∑ i = 1 n ( f ∗ g ) ( i ) ~~~~\sum_{i=1}^{n}(f*g)(i)     i=1n(fg)(i)
= ∑ i = 1 n ∑ d ∣ i f ( d ) g ( i d ) =\sum_{i=1}^{n}\sum_{d|i}^{}f(d)g(\frac{i}{d}) =i=1ndif(d)g(di)
= ∑ i = 1 n ∑ d ∣ i d 2 φ ( d ) ( i d ) 2 =\sum_{i=1}^{n}\sum_{d|i}^{}d^2\varphi(d)(\frac{i}{d})^2 =i=1ndid2φ(d)(di)2
= ∑ i = 1 n i 2 ∑ d ∣ i φ ( d ) =\sum_{i=1}^{n}i^2\sum_{d|i}^{}\varphi(d) =i=1ni2diφ(d)
= ∑ i = 1 n i 3 =\sum_{i=1}^{n}i^3 =i=1ni3
= n 2 ( n + 1 ) 2 4 =\frac{n^2(n+1)^2}{4} =4n2(n+1)2

又因为:

     ∑ i = 1 n ∑ d ∣ i d 2 φ ( d ) ( i d ) 2 ~~~~\sum_{i=1}^{n}\sum_{d|i}^{}d^2\varphi(d)(\frac{i}{d})^2     i=1ndid2φ(d)(di)2
= ∑ i = 1 n i 2 ∑ d = 1 ⌊ n i ⌋ d 2 φ ( d ) =\sum_{i=1}^{n}i^2\sum_{d=1}^{\lfloor\frac{n}{i}\rfloor}d^2\varphi(d) =i=1ni2d=1ind2φ(d)
= ∑ i = 2 n i 2 ∑ d = 1 ⌊ n i ⌋ d 2 φ ( d ) + ∑ i = 1 n i 2 φ ( i ) =\sum_{i=2}^{n}i^2\sum_{d=1}^{\lfloor\frac{n}{i}\rfloor}d^2\varphi(d)+\sum_{i=1}^{n}i^2\varphi(i) =i=2ni2d=1ind2φ(d)+i=1ni2φ(i)
= n 2 ( n + 1 ) 2 4 =\frac{n^2(n+1)^2}{4} =4n2(n+1)2

所以:

∑ i = 1 n i 2 φ ( i ) = n 2 ( n + 1 ) 2 4 − ∑ i = 2 n i 2 ∑ d = 1 ⌊ n i ⌋ d 2 φ ( d ) \sum_{i=1}^{n}i^2\varphi(i)=\frac{n^2(n+1)^2}{4}-\sum_{i=2}^{n}i^2\sum_{d=1}^{\lfloor\frac{n}{i}\rfloor}d^2\varphi(d) i=1ni2φ(i)=4n2(n+1)2i=2ni2d=1ind2φ(d)

使用杜教筛将时间复杂度降到 O ( n 2 3 ) O(n^{\frac{2}{3}}) O(n32)

数学太难了QAQ

代码:

#include<cstdio>
#include<cmath>
#include<cstring>
#include<map>
#include<algorithm>

#define maxn 5000000
#define INF 0x3f3f3f3f
#define MOD 1000000007
#define two 500000004
#define six 166666668

using namespace std;

inline long long getint()
{
	long long num=0,flag=1;char c;
	while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
	while(c>='0'&&c<='9')num=num*10+c-48,c=getchar();
	return num*flag;
}

long long n;
bool not_prime[maxn+5];
int prime[maxn+5],cnt;
long long phi[maxn+5];
map<long long,long long>M;

inline void init()
{
	phi[1]=1;
	for(int i=2;i<=maxn;i++)
	{
		if(!not_prime[i])prime[++cnt]=i,phi[i]=i-1;
		for(int j=1;j<=cnt&&i*prime[j]<=maxn;j++)
		{
			not_prime[i*prime[j]]=1;
			if(i%prime[j])phi[i*prime[j]]=phi[i]*phi[prime[j]];
			else{phi[i*prime[j]]=phi[i]*prime[j];break;}
		}
	}
	for(int i=1;i<=maxn;i++)(phi[i]*=1ll*i*i%MOD)%=MOD;
	for(int i=1;i<=maxn;i++)(phi[i]+=phi[i-1])%=MOD;
}

inline long long getsqr(long long x)
{return x%MOD*((x+1)%MOD)%MOD*((2*x+1)%MOD)%MOD*six%MOD;}

inline long long solve(long long x)
{
	if(x<=maxn)return phi[x];
	if(M.count(x))return M[x];
	long long sum=x%MOD*((x+1)%MOD)%MOD*two%MOD;
	(sum*=sum)%=MOD;
	for(long long i=2,j;i<=x;i=j+1)
	{
		j=x/(x/i);
		(sum-=(getsqr(j)-getsqr(i-1))%MOD*solve(x/i)%MOD)%=MOD;
		(sum+=MOD)%=MOD;
	}
	return M[x]=sum;
}

int main()
{
	init();
	n=getint();
	long long sum=0;
	for(long long i=1,j;i<=n;i=j+1)
	{
		j=n/(n/i);
		(sum+=1ll*(j+i)%MOD*(j-i+1)%MOD*two%MOD*solve(n/i)%MOD)%=MOD;
	}
	printf("%lld\n",sum);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值