[洛谷 P2257] YY的GCD(莫比乌斯反演) | 错题本

文章目录

题目

[洛谷 P2257] YY的GCD

分析

不妨设 N ≥ M N \geq M NM P P P 是素数集,枚举 d = gcd ⁡ ( x , y ) , i = x d , j = y d d = \gcd(x, y), i = \frac{x}{d}, j = \frac{y}{d} d=gcd(x,y),i=dx,j=dy,要求的即 ∑ d = 1 M [ d ∈ P ] ∑ i = 1 ⌊ N d ⌋ ∑ j = 1 ⌊ M d ⌋ [ gcd ⁡ ( i , j ) = 1 ] = ∑ d = 1 M [ d ∈ P ] ∑ i = 1 ⌊ N d ⌋ ∑ j = 1 ⌊ M d ⌋ ∑ k ∣ gcd ⁡ ( i , j ) μ ( k ) = ∑ d = 1 M [ d ∈ P ] ∑ k = 1 ⌊ M d ⌋ μ ( k ) ⌊ N d k ⌋ ⌊ M d k ⌋ \begin{aligned} &\sum_{d = 1}^{M} [d \in P]\sum_{i = 1}^{\left\lfloor\frac{N}{d}\right\rfloor} \sum_{j = 1}^{\left\lfloor\frac{M}{d}\right\rfloor} [\gcd(i, j) = 1] \\ =&\sum_{d = 1}^{M} [d \in P] \sum_{i = 1}^{\left\lfloor\frac{N}{d}\right\rfloor} \sum_{j = 1}^{\left\lfloor\frac{M}{d}\right\rfloor} \sum_{k | \gcd(i, j)}\mu(k) \\ =&\sum_{d = 1}^{M} [d \in P] \sum_{k = 1}^{\left\lfloor\frac{M}{d}\right\rfloor} \mu(k) \left\lfloor\frac{N}{dk}\right\rfloor \left\lfloor\frac{M}{dk}\right\rfloor \end{aligned} ==d=1M[dP]i=1dNj=1dM[gcd(i,j)=1]d=1M[dP]i=1dNj=1dMkgcd(i,j)μ(k)d=1M[dP]k=1dMμ(k)dkNdkM

注意一个细节是 ⌊ ⌊ N d ⌋ k ⌋ = ⌊ N d k ⌋ \left\lfloor \frac{\left\lfloor \frac{N}{d} \right\rfloor}{k} \right\rfloor = \left\lfloor \dfrac{N}{dk} \right\rfloor kdN=dkN 证明:
{ x } \{x\} {x} 表示 x x x 的小数部分: ⌊ N d k ⌋ = ⌊ ⌊ N d ⌋ + { N d } k ⌋ = ⌊ ⌊ N d ⌋ k + { N d } k ⌋ = ⌊ ⌊ N d ⌋ k ⌋ \left\lfloor \frac{N}{dk} \right\rfloor = \left\lfloor \frac{ \left\lfloor \frac{N}{d} \right\rfloor + \left\{\frac{N}{d}\right\}}{k} \right\rfloor = \left\lfloor \frac{\left\lfloor \frac{N}{d} \right\rfloor}{k} + \frac{\left\{\frac{N}{d}\right\}}{k}\right\rfloor = \left\lfloor \frac{\left\lfloor \frac{N}{d} \right\rfloor}{k} \right\rfloor dkN=kdN+{dN}=kdN+k{dN}=kdN

注意一个技巧:设 T = d k T = dk T=dk,于是可以枚举 T T T ∑ T = 1 M ⌊ N T ⌋ ⌊ M T ⌋ ∑ d ∣ T [ d ∈ P ] μ ( T d ) \sum_{T = 1}^M \left\lfloor\frac{N}{T}\right\rfloor \left\lfloor\frac{M}{T}\right\rfloor \sum_{d | T}[d \in P] \mu\left(\frac{T}{d}\right) T=1MTNTMdT[dP]μ(dT) 注意到 ∑ d ∣ T [ d ∈ P ] μ ( T d ) \sum_{d | T}[d \in P] \mu\left(\frac{T}{d}\right) dT[dP]μ(dT) 可以 O ( N ln ⁡ N ) O(N \ln N) O(NlnN) 预处理,查询的时候整数分块 O ( N ) O(\sqrt N) O(N ) 即可。

代码

要吸氧。

#include <bits/stdc++.h>

typedef long long LL;

const int MAXN = 10000000;

LL Num[MAXN + 5];

int Mu[MAXN + 5];
bool Vis[MAXN + 5];
std::vector<int> Primes;

void Init(int n) {
	Mu[1] = 1;
	for (int i = 2; i <= n; i++) {
		if (!Vis[i])
			Mu[i] = -1, Primes.push_back(i);
		for (int j = 0; j < (int)Primes.size() && i * Primes[j] < n; j++) {
			Vis[i * Primes[j]] = true;
			if (i % Primes[j] == 0) {
				Mu[i * Primes[j]] = 0;
				break;
			}
			Mu[i * Primes[j]] = -Mu[i];
		}
	}
	for (int i = 0; i < Primes.size(); i++) {
        int p = Primes[i];
        for (int j = p, c = 1; j <= n; j += p, c++)
            Num[j] += Mu[c];
	}
	for (int i = 1; i <= n; i++)
        Num[i] += Num[i - 1];
}

int main() {
    Init(MAXN);
    int T; scanf("%d", &T);
    while (T--) {
        int N, M; scanf("%d%d", &N, &M);
        if (N < M) std::swap(N, M); LL Ans = 0;
        for (LL lft = 1, rgt = 1; lft <= M; lft = rgt + 1) {
            rgt = std::min(M / (M / lft), N / (N / lft));
            Ans += (N / lft) * (M / lft) * (Num[rgt] - Num[lft - 1]);
        }
        printf("%lld\n", Ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值