题目
Description
Input
Output
Sample Input 1
4
3 2 1 4
Sample Output 1
4
Sample Input 2
2
1 2
Sample Output 2
2
Data Constraint
Hint
分析
对于数字 a i a_i ai,它要从第 i i i个位置到第 a i a_i ai个位置,相当于以 i + a i 2 \dfrac{i+a_i}{2} 2i+ai为中心,以 ∣ i + a i 2 − i ∣ \left|\dfrac{i+a_i}{2}-i\right| ∣∣∣∣2i+ai−i∣∣∣∣为半径旋转过后,能够得到1点收益。由于只能转一次,枚举每个点为中心以及要旋转的半径,更新答案即可,注意要考虑原本就在固定点的数,旋转过后会离开固定点(因为这个问题所以不能直接以最大半径旋转)。可以像马拉车那样把每个数之间加入一个 0 0 0,这样更方便算旋转中心不在整点的情况。
代码
说起来简单写起来难。还要统计前缀和什么的= =
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
int read(){
int x=0,f=1;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
#define MAXN 100000
int N;
int A[2*MAXN+5];
int Fixed[2*MAXN+5];
struct node{
int l,r;
node(){}
node(int a,int b):
l(a),r(b){}
};
vector<node> R[2*MAXN+5];
bool cmp(node i,node j){
return i.r-i.l<j.r-j.l;
}
int main(){
freopen("rotate.in" ,"r", stdin);
freopen("rotate.out","w",stdout);
N=read();
for(int i=1;i<=N;i++){
int j=i*2-1;
A[j]=read();
R[i+A[j]-1].push_back(node(min(j,A[j]*2-1),max(j,A[j]*2-1)));
//把这个数复位需要旋转的区间,注意我是隔着存的
}
N=2*N-1;
for(int i=1;i<=N;i++)
Fixed[i]=Fixed[i-1]+(A[i]==(i+1)/2);
//固定点的前缀和
int Ans=0;
for(int i=1;i<=N;i++){
sort(R[i].begin(),R[i].end(),cmp);
//先按区间大小(半径)排序,这样它和它前面的所有数(共j+1个)都能被复位
for(int j=0;j<int(R[i].size());j++){
int Max=(R[i][j].r-R[i][j].l)>>1;
int tmp=Fixed[N]+(j+1)-(Fixed[i+Max]-Fixed[i-Max-1]);
//要减掉原本就固定了的数量
Ans=max(Ans,tmp);
}
}
printf("%d",Ans);
}