位图

题目描述

时间限制: 1 Sec 内存限制: 64 MB

给出一个大小为n行*m列的矩形位图。该位图的每一个象素点不是白色就是黑色,但是至少有一个象素点是白色。在i行j列的象素点我们称为点(i,j)。两个象素点p1=(i1,j1)和p2=(i2,j2)之间的距离定义如下:

d(p1,p2)=|i1-i2|+|j1-j2|.

现在的任务是:对于每一个象素点,计算它到最近的白色点的距离。如果它本身是白色点,距离为0。

输入

第1行:2个整数n,m(1<=n <=182,1<=m<=182)
接下来n行,每一行有一个长度为m的0/1字符串,描述一行象素点。如果点(i,j)为白色,则值为1,否则值为0。

输出

共n行,每行有m个整数,数之间用1个空格分开,分别表示对应的象素点距离白色点的距离。

样例输入

3 4
0001
0011
0110

样例输出

3 2 1 0
2 1 0 0
1 0 0 1

思路

由题,有多个白点与黑点。
则很容易想到用BFS来做,用个队列来存每个白点坐标。
然后用4个方向去扩散出去,得到数组状态即为解。

代码

#include<queue> 
#include<cstdio> 
#include<algorithm> 
using namespace std; 
const int MAXN=200; 
const int INF=0X3FFFFFFF; 
int f[10][5]={{0,-1},{0,1},{1,0},{-1,0}}; 
int n,m,t[MAXN][MAXN]; 
int vis[MAXN][MAXN]; 
queue<int>T1,T2; 
int main() 
{ 
    while(!T1.empty())T1.pop(); 
    while(!T2.empty())T2.pop(); 
    scanf("%d%d",&n,&m); 
    for(int i=1;i<=n;i++) 
    { 
        char c[MAXN]={0}; 
        scanf("%s",c); 
        for(int j=1;j<=m;j++) 
        { 
            t[i][j]=c[j-1]-'0'; 
            if(t[i][j]) 
            { 
                vis[i][j]=1; 
                T1.push(i); 
                T2.push(j); 
            } 
            else vis[i][j]=INF; 
        } 
    } 
    while(!T1.empty()) 
    { 
        int w1,w2,k1,k2; 
        k1=T1.front(),k2=T2.front(); 
        for(int i=0;i<4;i++) 
        { 
            w1=k1+f[i][0],w2=k2+f[i][1]; 
            if(w1>=1&&w1<=n&&w2>=1&&w2<=m) 
                if(vis[w1][w2]>vis[k1][k2]+1) 
                { 
                    vis[w1][w2]=vis[k1][k2]+1; 
                    T1.push(w1); 
                    T2.push(w2); 
                } 
        } 
        T1.pop(); 
        T2.pop(); 
    } 
    for(int i=1;i<=n;i++) 
    { 
        for(int j=1;j<m;j++) 
            printf("%d ",vis[i][j]-1); 
        printf("%d\n",vis[i][m]-1); 
    } 
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值