题目描述
时间限制: 1 Sec 内存限制: 64 MB
给出一个大小为n行*m列的矩形位图。该位图的每一个象素点不是白色就是黑色,但是至少有一个象素点是白色。在i行j列的象素点我们称为点(i,j)。两个象素点p1=(i1,j1)和p2=(i2,j2)之间的距离定义如下:
d(p1,p2)=|i1-i2|+|j1-j2|.
现在的任务是:对于每一个象素点,计算它到最近的白色点的距离。如果它本身是白色点,距离为0。
输入
第1行:2个整数n,m(1<=n <=182,1<=m<=182)
接下来n行,每一行有一个长度为m的0/1字符串,描述一行象素点。如果点(i,j)为白色,则值为1,否则值为0。
输出
共n行,每行有m个整数,数之间用1个空格分开,分别表示对应的象素点距离白色点的距离。
样例输入
3 4
0001
0011
0110
样例输出
3 2 1 0
2 1 0 0
1 0 0 1
思路
由题,有多个白点与黑点。
则很容易想到用BFS来做,用个队列来存每个白点坐标。
然后用4个方向去扩散出去,得到数组状态即为解。
代码
#include<queue>
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN=200;
const int INF=0X3FFFFFFF;
int f[10][5]={{0,-1},{0,1},{1,0},{-1,0}};
int n,m,t[MAXN][MAXN];
int vis[MAXN][MAXN];
queue<int>T1,T2;
int main()
{
while(!T1.empty())T1.pop();
while(!T2.empty())T2.pop();
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
char c[MAXN]={0};
scanf("%s",c);
for(int j=1;j<=m;j++)
{
t[i][j]=c[j-1]-'0';
if(t[i][j])
{
vis[i][j]=1;
T1.push(i);
T2.push(j);
}
else vis[i][j]=INF;
}
}
while(!T1.empty())
{
int w1,w2,k1,k2;
k1=T1.front(),k2=T2.front();
for(int i=0;i<4;i++)
{
w1=k1+f[i][0],w2=k2+f[i][1];
if(w1>=1&&w1<=n&&w2>=1&&w2<=m)
if(vis[w1][w2]>vis[k1][k2]+1)
{
vis[w1][w2]=vis[k1][k2]+1;
T1.push(w1);
T2.push(w2);
}
}
T1.pop();
T2.pop();
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<m;j++)
printf("%d ",vis[i][j]-1);
printf("%d\n",vis[i][m]-1);
}
}