[SDOI2017]序列计数

一、题目

点此看题

二、解法

0x01 朴素dp
需要把题目中的这n个数的和是p的倍数转化成 这 n n n个数的和 % p \%p %p等于 0 0 0,因为保证至少一个数是质数很难,我们可以用 全部-不含质数的方案数,设 d p [ i ] [ j ] dp[i][j] dp[i][j]为前 i i i个数的和 % p \%p %p的值为 j j j的总方案数,转移如下:
d p [ i ] [ j ] = ∑ d p [ i − 1 ] [ ( j − k + p ) % p ] × c n t [ k ] dp[i][j]=\sum dp[i-1][(j-k+p)\%p]\times cnt[k] dp[i][j]=dp[i1][(jk+p)%p]×cnt[k]时间复杂度 O ( n p 2 ) O(np^2) O(np2),可以拿到 30 30 30分的高分。

0x02 矩阵加速
看到 n n n这么大应该能想到矩阵加速把,我们可以构造出如下的矩阵:

用来乘的矩阵:
c n t 0 c n t 1 . . . . . . c n t p − 1 \begin{matrix}cnt_0\\cnt_1\\......\\cnt_{p-1}\end{matrix} cnt0cnt1......cntp1

快速幂矩阵:
c n t 0 c n t p − 1 c n t p − 2 . . . . . . c n t 1 c n t 0 c n t p − 1 . . . . . . . . . . . . . \begin{matrix}cnt_0&cnt_{p-1}&cnt_{p-2}......\\cnt_1&cnt_0&cnt_{p-1}......\\.......\end{matrix} cnt0cnt1.......cntp1cnt0cntp2......cntp1......
其实构造方法就是让两个矩阵对应元素和一定,然后我们跑两遍快速幂。(下面还有一种方法)

#include <cstdio>
#include <cstring>
const int mod = 20170408;
const int MAXM = 2e7+5; 
int read()
{
    int num=0,flag=1;char c;
    while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
    while(c>='0'&&c<='9')num=(num<<3)+(num<<1)+(c^48),c=getchar();
    return num*flag;
}
int n,m,p,tot,ans[2],cnt[105],pr[MAXM/10];
bool vis[MAXM];
struct Matrix
{
	int n,m,a[105][105];
	Matrix() {n=m=0;memset(a,0,sizeof a);}
	Matrix operator * (const Matrix &x) const
    {
        Matrix r;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                for(int k=1;k<=x.m;k++)
                    r.a[i][k]=(r.a[i][k]+1ll*a[i][j]*x.a[j][k])%mod;
        r.n=n;r.m=x.m;
        return r;
    }
}A,F;
Matrix qkpow(Matrix a,int b)
{
	Matrix res;
	res.n=res.m=p;
	for(int i=1;i<=p;i++)
		res.a[i][i]=1;
	while(b>0)
	{
		if(b&1) res=res*a;
		a=a*a;
		b>>=1;
	}
	return res;
}
void fuck(int f)
{
	A.n=A.m=p;
	F.n=p;F.m=1;
	for(int i=1;i<=p;i++)
		for(int j=1;j<=p;j++)
			A.a[i][j]=cnt[(i-j+p)%p];
	for(int i=1;i<=p;i++)
		F.a[i][1]=cnt[i-1];
	ans[f]=(qkpow(A,n-1)*F).a[1][1];
}
signed main()
{
	n=read();m=read();p=read();
	for(int i=0;i<p;i++) cnt[i]=m/p;
	for(int i=1;i<=m%p;i++)
		cnt[i]++;
	fuck(0);
	for(int i=2;i<=m;i++)
	{
		if(!vis[i]) cnt[i%p]--,pr[++tot]=i;
		for(int j=1;j<=tot && i*pr[j]<=m;j++)
		{
			vis[i*pr[j]]=1;
			if(i%pr[j]==0) break;
		}
	}
	fuck(1);
	printf("%d\n",(ans[0]-ans[1]+mod)%mod);
}

0x03 对dp深入思考
发现本题选数的限制很小,我们可以改写 d p dp dp方程,设 f [ i ] [ j ] f[i][j] f[i][j] i i i个数 % p \%p %p后的值为 j j j的方案数,转移:
f [ i ] [ j ] = ∑ f [ m i d ] [ k ] × f [ m i d ] [ ( j − k + p ) % p ] f[i][j]=\sum f[mid][k]\times f[mid][(j-k+p)\%p] f[i][j]=f[mid][k]×f[mid][(jk+p)%p]现在我们就只需要求 m i d mid mid d p dp dp值了,然后不需要优化的时间复杂度是 O ( log ⁡ n p 2 ) O(\log np^2) O(lognp2)
这个式子可以用 FFT \text{FFT} FFT优化,有优化后的复杂度是 O ( log ⁡ n p log ⁡ p ) O(\log np\log p) O(lognplogp)

咕咕咕
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值