SDOI2017 题解

[SDOI2017]序列计数
发现至少有一个数是质数不是很好办,考虑用全部的减去没有一个质数的
f x f_x fx表示当前模p余x的方案数,然后转移是一个卷积,因为p很小,上一个快速幂+暴力卷积就可以过了
然后没有一个质数的初值就是 f x % p = 1 ( x ∉ P ) f_{x\%p}=1(x\notin P) fx%p=1(x/P),总的个数的话全部设成1就可以了
[SDOI2017]树点涂色
发现将x到根的路径全部染色有一点像一个 access,一个 splay 代表的就是一种颜色
然后第二种询问可以差分一下,转换为求一个点到根经过的颜色个数
就是 access 时切换的次数
关于第3个询问,考虑 access 时对答案的影响,就是一棵子树中的答案全部减1,一棵+1,access 的时候类似LCT维护子树操作更新,再套一个dfs序维护就可以了
[SDOI2017]数字表格
a n s = ∏ d = 1 n f [ d ] ∑ i ∑ j [ g c d ( i , j ) = d ] ans=\prod _{d=1}^nf[d]^{ \sum_i \sum_j [gcd(i,j)=d]} ans=d=1nf[d]ij[gcd(i,j)=d]
里面的东西:
∑ i n ∑ j m [ g c d ( i , j ) = d ] \sum_i^n \sum_j^m [gcd(i,j)=d] injm[gcd(i,j)=d]
= ∑ i n / d ∑ j m / d ∑ l ∣ g c d ( i , j ) μ ( l ) =\sum_i ^{n/d} \sum_j^{m/d} \sum_{l|gcd(i,j)} \mu (l) =in/djm/dlgcd(i,j)μ(l)
= ∑ l = 1 n / d μ ( l ) ⌊ n l d ⌋ ⌊ m l d ⌋ =\sum_{l=1}^{n/d} \mu(l) \left \lfloor \frac{n}{ld}\right \rfloor \left \lfloor \frac{m}{ld}\right \rfloor =l=1n/dμ(l)ldnldm
a n s = ∏ d = 1 n f [ d ] ∑ l = 1 n / d μ ( l ) ⌊ n l d ⌋ ⌊ m l d ⌋ ans=\prod _{d=1}^nf[d]^{ \sum_{l=1}^{n/d} \mu(l) \left \lfloor \frac{n}{ld}\right \rfloor \left \lfloor \frac{m}{ld}\right \rfloor} ans=d=1nf[d]l=1n/dμ(l)ldnldm
= ∏ T = 1 n ( ∏ d ∣ T f [ d ] μ ( T d ) ) ⌊ n T ⌋ ⌊ m T ⌋ =\prod _{T=1}^n (\prod_{d|T} f[d]^{\mu(\frac{T}{d})} )^{ \left \lfloor \frac{n}{T}\right \rfloor \left \lfloor \frac{m}{T}\right \rfloor} =T=1n(dTf[d]μ(dT))TnTm
然后预处理前面一坨,整除分块
[SDOI2017]新生舞会
分数规划+费用流

[SDOI2017]硬币游戏
P 0 P_0 P0为非终止状态的概率 P i P_i Pi为 i 获胜的概率
i 获胜可以从一个非终止状态+它本身的串来获胜,但是在生成它之前可能已经被它的前缀给占了
于是要减去先生成它的前缀的概率,最后加上一个 ∑ p ( i ) = 1 \sum p (i)=1 p(i)=1就可以高斯消元

在这里插入图片描述

[SDOI2017]相关分析
直接把平均数拆开带进去,发现要维护 ∑ x i y i \sum x_iy_i xiyi ∑ x i 2 \sum x_i^2 xi2 ∑ x i \sum x_i xi ∑ y i \sum y_i yi
然后第3个修改比较头疼,考虑先重新赋值,再一起加上S,T就是可以了
[SDOI2017]遗忘的集合
考虑如果知道集合怎么求 f f f
构造生成函数, f ( i ) = ∑ j = 0 i n f x i j = 1 1 − x i f(i)=\sum_{j=0}^{inf}x^{ij}=\frac{1}{1-x^i} f(i)=j=0infxij=1xi1
那么如果用 t i t_i ti表示有没有出现,答案的生成函数就是 f = ∑ i = 1 i n f ( 1 1 − x i ) t i f=\sum _{i=1}^{inf}(\frac{1}{1-x^i})^{t_i} f=i=1inf(1xi1)ti
现在晓得 f,要求 t
两边取对数, − l n ( f ) = ∑ i = 1 i n f t i ∗ l n ( 1 − x i ) -ln(f)=\sum_{i=1}^{inf}t_i*ln(1-x^i) ln(f)=i=1inftiln(1xi)
考虑化简 l n ( 1 − x i ) ln(1-x^i) ln(1xi) ,先求导 l n ′ ( 1 − x i ) = − i ∗ x i − 1 1 − x i ln'(1-x^i)=\frac{-i*x^{i-1}}{1-x^i} ln(1xi)=1xiixi1
直接暴力展开 − i ∗ x i − 1 1 − x i = ( − i ∗ x i − 1 ) ∗ ∑ j = 0 i n f x i j = ∑ j = 0 i n f − i ∗ x i ∗ j + i − 1 \frac{-i*x^{i-1}}{1-x^i}=(-i*x^{i-1})*\sum_{j=0}^{inf}x^{ij}=\sum_{j=0}^{inf}-i*x^{i*j+i-1} 1xiixi1=(ixi1)j=0infxij=j=0infixij+i1
积分回去 = ∑ j = 0 i n f − i ∗ x i ∗ ( j + 1 ) i ∗ ( j + 1 ) = − ∑ j = 1 i n f x i ∗ j j =\sum_{j=0}^{inf}\frac{-i*x^{i*(j+1)}}{i*(j+1)}=-\sum_{j=1}^{inf}\frac{x^{i*j}}{j} =j=0infi(j+1)ixi(j+1)=j=1infjxij
那么原式就是 l n ( f ) = ∑ i = 1 i n f t i ∗ ∑ j = 1 i n f x i ∗ j j = ∑ T = 1 i n f x T ∗ ∑ l ∣ T t l ∗ l T ln(f)=\sum_{i=1}^{inf}t_i*\sum_{j=1}^{inf}\frac{x^{i*j}}{j}=\sum_{T=1}^{inf}x^T*\sum_{l|T}t_l*\frac{l}{T} ln(f)=i=1inftij=1infjxij=T=1infxTlTtlTl
那么将 f 取 ln,然后调和级数算一下贡献就可以了

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值