Maze

24 篇文章 0 订阅

一、题目

在这里插入图片描述

二、解法

先考虑朴素 d p dp dp把,设 f [ i ] [ j ] f[i][j] f[i][j]为从 ( 1 , 1 ) (1,1) (1,1)走向位置 ( i , j ) (i,j) (i,j)的方案数,则有转移:
f [ i ] [ j ] = ∑ j − j ′ ≤ k − 1 f [ i − 1 ] [ j ′ ] × b [ j − j ′ ] f[i][j]=\sum_{j-j'\leq k-1} f[i-1][j']\times b[j-j'] f[i][j]=jjk1f[i1][j]×b[jj]发现上面的 d p dp dp式子是卷积的形式,可以用 FFT/NTT \text{FFT/NTT} FFT/NTT优化。
但是这道题的 n n n很大,就算用卷积优化也不行,那我们就用一个快速幂,对数组 b b b进行 n − 2 n-2 n2次卷积后再和 a a a数组进行卷积,这道题要限制 b b b的长度在 m m m以内,如果要用 NTT \text{NTT} NTT的话,可以把模数开的很大,最后在模 19 19 19,因为大的模数不会是 NTT \text{NTT} NTT时的答案变小,注意我的代码是把题目中的 a , b a,b a,b数组存成了 b , a b,a b,a不要问我为什么 ),需要特判 n = 1 n=1 n=1的情况。

#include <cstdio>
#include <iostream>
using namespace std;
const int M = 50005;
const int MOD = 1004535809;
#define int long long
int read()
{
	int x=0,f=1;char c;
	while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
	while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
	return x*f;
}
int n,m,k,len,lg,a[M],r[M],rev[M];
int qkpow(int a,int b)
{
	int r=1;
	while(b>0)
	{
		if(b&1) r=r*a%MOD;
		a=a*a%MOD;
		b>>=1;
	}
	return r;
}
void NTT(int *a,int len,int tmp)
{
	for(int i=0;i<len;i++)
	{
		rev[i]=(rev[i>>1]>>1)|((i&1)<<(lg-1));
		if(i<rev[i]) swap(a[i],a[rev[i]]);
	}
	for(int s=2;s<=len;s<<=1)
	{
		int t=s/2,w=(tmp==1)?qkpow(3,(MOD-1)/s):qkpow(3,(MOD-1)-(MOD-1)/s);
		for(int i=0;i<len;i+=s)
		{
			int x=1;
			for(int j=0;j<t;j++,x=x*w%MOD)
			{
				int fe=a[i+j],fo=a[i+j+t];
				a[i+j]=(fe+x*fo)%MOD;
				a[i+j+t]=((fe-fo*x)%MOD+MOD)%MOD;
				//一定要这样,保证是正数才行 
			}
		}
	}
	if(tmp==1) return ;
	int inv=qkpow(len,MOD-2);
	for(int i=0;i<len;i++) a[i]=a[i]*inv%MOD;
}
void mul(int *a,int *b,int *c)
{
	int A[M]={},B[M]={};len=1;lg=0;
	while(len<=2*m) len<<=1,lg++;
	for(int i=0;i<m;i++) A[i]=a[i];
	for(int i=0;i<m;i++) B[i]=b[i];
	NTT(A,len,1);NTT(B,len,1);
	for(int i=0;i<len;i++) A[i]=A[i]*B[i]%MOD;
	NTT(A,len,-1);
	for(int i=0;i<m;i++) c[i]=A[i]%19;
}
signed main()
{
	n=read()-1;m=read();k=read();
	for(int i=0;i<m;i++) r[i]=read()%19;
	for(int i=0;i<k;i++) a[i]=read()%19;
	while(n>0)
	{
		if(n&1) mul(r,a,r);
		mul(a,a,a);
		n>>=1;
	}
	for(int i=0;i<m;i++)
		printf("%lld ",(r[i]+19)%19);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值