母函数的性质
1、定义
母函数是用于对应一个无穷序列的幂级数,一般来说母函数有形式:
G ( x ) = g 0 + g 1 x + g 2 + x 2 + . . . = ∑ i = 0 ∞ g i x i G(x)=g_0+g_1x+g_2+x^2+...=\sum_{i=0}^\infty g_ix^i G(x)=g0+g1x+g2+x2+...=i=0∑∞gixi = < g 0 , g 1 , g 2 . . . . . . > =<g_0,g_1,g_2......> =<g0,g1,g2......>2、闭形式
举一个例子,有一个生成函数是 < 1 , 1 , 1... > <1,1,1...> <1,1,1...>,我们尝试对它求和:
< 1 , 1 , 1... > = 1 − x ∞ 1 − x = 1 1 − x <1,1,1...>=\frac{1-x^{\infty}}{1-x}=\frac{1}{1-x} <1,1,1...>=1−x1−x∞=1−x1最后一步是因为在 x ∈ ( 0 , 1 ) x\in(0,1) x∈(0,1)时, x ∞ x^\infty x∞趋近于 0 0 0,那我们就可以得到一个简洁的表达方法,这就是闭形式。
3、基础操作
- 放缩,即 < c g 0 , c g 1 , c g 2 . . . . > = c G ( x ) <cg_0,cg_1,cg_2....>=cG(x) <cg0,cg1,cg2....>=cG(x)
- 加减法,即 < f 0 ± g 0 , f 1 ± g 1 , f 2 ± g 2 . . . . > = F ( x ) ± G ( x ) <f_0\pm g_0,f_1\pm g_1,f_2\pm g_2....>=F(x)\pm G(x) <<