[学习笔记]母函数

本文探讨了母函数的概念,包括定义、闭形式及基础操作,并通过三个实例——wyx旅游问题、求偶数个5的十进制数个数、遗忘的集合问题——深入阐述了母函数在解决实际问题中的应用。
摘要由CSDN通过智能技术生成

母函数的性质

1、定义

母函数是用于对应一个无穷序列的幂级数,一般来说母函数有形式:
G ( x ) = g 0 + g 1 x + g 2 + x 2 + . . . = ∑ i = 0 ∞ g i x i G(x)=g_0+g_1x+g_2+x^2+...=\sum_{i=0}^\infty g_ix^i G(x)=g0+g1x+g2+x2+...=i=0gixi = < g 0 , g 1 , g 2 . . . . . . > =<g_0,g_1,g_2......> =<g0,g1,g2......>2、闭形式

举一个例子,有一个生成函数是 < 1 , 1 , 1... > <1,1,1...> <1,1,1...>,我们尝试对它求和:
< 1 , 1 , 1... > = 1 − x ∞ 1 − x = 1 1 − x <1,1,1...>=\frac{1-x^{\infty}}{1-x}=\frac{1}{1-x} <1,1,1...>=1x1x=1x1最后一步是因为在 x ∈ ( 0 , 1 ) x\in(0,1) x(0,1)时, x ∞ x^\infty x趋近于 0 0 0,那我们就可以得到一个简洁的表达方法,这就是闭形式

3、基础操作

  • 放缩,即 < c g 0 , c g 1 , c g 2 . . . . > = c G ( x ) <cg_0,cg_1,cg_2....>=cG(x) <cg0,cg1,cg2....>=cG(x)
  • 加减法,即 < f 0 ± g 0 , f 1 ± g 1 , f 2 ± g 2 . . . . > = F ( x ) ± G ( x ) <f_0\pm g_0,f_1\pm g_1,f_2\pm g_2....>=F(x)\pm G(x) <<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值