我是看Joyemang33大佬的博客学的,谢谢他。
该位大佬的博客内容可能会引起强烈不适(如傻逼题..反正这个题挺无脑的,下午拿到题40分钟就写完过了
),请谨慎观看。
一、题目
二、解法
首先把问题转化成图论模型,我们把是 A A A前缀的 B B B连向 A A A,但是这样做边数就达到了 O ( n a × n b ) O(na\times nb) O(na×nb),既然是前缀关系,我们考虑后缀自动机优化建图。
先对反串建后缀树(这样前缀就变成了后缀),首先把后缀树上的点拆成入点和出点,父亲的出点连儿子的入点。我们先把 A , B A,B A,B的串在后缀树定位,可以倍增实现,然后对于每一个后缀树上的点,把在上面的 A , B A,B A,B按长度点排序(相同则 B B B在前),这样形成了一个序列(入点为首,出点为尾),然后按顺序相邻两个建边即可,这里不能把 A A A的贡献直接记在 A A A上,而应该新建一个点,让 A A A连出去,把贡献记在这个点上。
然后直接把 A , B A,B A,B的支配关系连边即可,最后跑一遍拓扑排序求最长路,如果又环那么 − 1 -1 −1,注意答案需要开 l o n g l o n g long long longlong,、总时间复杂度 O ( n log n ) O(n\log n) O(nlogn),贴个代码。
#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define ll long long
const int M = 2000005;
int read()
{
int x=0,flag=1;char c;
while((c=getchar())<'0' || c>'9') if(c=='-') flag=-1;
while(c>='0' && c<='9') x=(x<<3)