[十二省联考2019]字符串问题

这篇博客介绍了如何解决一道关于字符串的问题,通过将问题转化为图论模型,并利用后缀自动机进行优化。博主从反串建后缀树开始,详细阐述了如何定位A和B的串,以及如何按顺序建边。在建边过程中,为了避免直接在A上记录贡献,创建了新的点。最后,通过拓扑排序和最长路算法求解,如果发现环则返回-1。总时间复杂度为O(nlogn)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我是看Joyemang33大佬的博客学的,谢谢他。

该位大佬的博客内容可能会引起强烈不适(如傻逼题..反正这个题挺无脑的,下午拿到题40分钟就写完过了),请谨慎观看。

一、题目

点此看题

二、解法

首先把问题转化成图论模型,我们把是 A A A前缀的 B B B连向 A A A,但是这样做边数就达到了 O ( n a × n b ) O(na\times nb) O(na×nb),既然是前缀关系,我们考虑后缀自动机优化建图。

先对反串建后缀树(这样前缀就变成了后缀),首先把后缀树上的点拆成入点和出点,父亲的出点连儿子的入点。我们先把 A , B A,B A,B的串在后缀树定位,可以倍增实现,然后对于每一个后缀树上的点,把在上面的 A , B A,B A,B按长度点排序(相同则 B B B在前),这样形成了一个序列(入点为首,出点为尾),然后按顺序相邻两个建边即可,这里不能把 A A A的贡献直接记在 A A A上,而应该新建一个点,让 A A A连出去,把贡献记在这个点上。

然后直接把 A , B A,B A,B的支配关系连边即可,最后跑一遍拓扑排序求最长路,如果又环那么 − 1 -1 1,注意答案需要开 l o n g l o n g long long longlong,、总时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn),贴个代码。

#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define ll long long
const int M = 2000005;
int read()
{
   
    int x=0,flag=1;char c;
    while((c=getchar())<'0' || c>'9') if(c=='-') flag=-1;
    while(c>='0' && c<='9') x=(x<<3)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值