一、题目
二、解法
赛场上挂了是因为不知道每个操作能无限次使用,后来发现这道题挺简单的。
首先我们可以把 a a a变成 0 0 0, b b b变成 b − a b-a b−a 。然后对于 t = 2 t=2 t=2的操作,我们可以直接连边,在同一连通块里的点权值可以互相转化,我们把每一个连通块看作一个点。
对于 t = 1 t=1 t=1的操作,如果我们把它看作点(连通块)连的边,那么如果两个点之间的路径长为偶数,那么他们的权值可以互相转化,我们可以对这个图黑白染色,如果染色不成功(某个点有两种颜色),说明这一片的权值和只要为偶数就行。如果染色成功,考虑每个点内部是否有边,如果有边和上述判断方法一样,否则看黑点和白点的权值是否相等即可。
读题不仔细,报零两行泪
#include <cstdio>
#include <vector>
#include <cstring>
using namespace std;
#define ll long long
const int M = 100005;
int read()
{
int x=0,flag=1;
char c;
while((c=getchar())<'0' || c>'9') if(c=='-') flag=-1;
while(c>='0' && c<='9') x=(x<<3)+(x<<1)+(c^48),c=getchar();
return x*flag;
}
int T,n,m,k,p,a[M],x[M],y[M],bel[M],col[M],tag[M];
ll sum[M],sa,sb,tg;vector<int> g[M],h[M];
void dfs1(int u,int c)
{
bel[u]=c;sum[c]+=a[u];
for(int i=0;i<g[u].size();i++)
{
int v=g[u][i];
if(!bel[v]) dfs1(v,c);
}
}
int dfs2(int u,int c)
{
if(col[u]!=-1) return col[u]==c;
col[u]=c;tg|=tag[u];
if(c==0) sa+=sum[u];
else sb+=sum[u];
bool f=1;
for(int i=0;i<h[u].size();i++)
{
int v=h[u][i];
f&=dfs2(v,c^1);
}
return f;
}
int main()
{
T=read();
while(T--)
{
n=read();m=read();k=p=0;
for(int i=1;i<=n;i++)
{
h[i].clear();g[i].clear();
a[i]=read();
}
for(int i=1;i<=n;i++)
a[i]=read()-a[i];
for(int i=1;i<=m;i++)
{
int op=read(),a=read(),b=read();
if(op==1)
x[++k]=a,y[k]=b;
else
{
g[a].push_back(b);
g[b].push_back(a);
}
}
memset(bel,0,sizeof bel);
memset(sum,0,sizeof sum);
memset(tag,0,sizeof tag);
for(int i=1;i<=n;i++)
if(!bel[i])
dfs1(i,++p);
for(int i=1;i<=k;i++)
if(bel[x[i]]==bel[y[i]])
tag[bel[x[i]]]=1;
else
{
h[bel[x[i]]].push_back(bel[y[i]]);
h[bel[y[i]]].push_back(bel[x[i]]);
}
memset(col,-1,sizeof col);
bool f=1;
for(int i=1;i<=p;i++)
if(col[i]==-1)
{
sa=sb=0;tg=0;
if(dfs2(i,0))
{
if(tg) f&=(sa+sb)%2==0;
else f&=(sa==sb);
}
else f&=(sa+sb)%2==0;
}
puts(f?"YES":"NO");
}
}