[NOI Online 提高组]序列

一、题目

点此看题

二、解法

赛场上挂了是因为不知道每个操作能无限次使用,后来发现这道题挺简单的。

首先我们可以把 a a a变成 0 0 0 b b b变成 b − a b-a ba 。然后对于 t = 2 t=2 t=2的操作,我们可以直接连边,在同一连通块里的点权值可以互相转化,我们把每一个连通块看作一个点。

对于 t = 1 t=1 t=1的操作,如果我们把它看作点(连通块)连的边,那么如果两个点之间的路径长为偶数,那么他们的权值可以互相转化,我们可以对这个图黑白染色,如果染色不成功(某个点有两种颜色),说明这一片的权值和只要为偶数就行。如果染色成功,考虑每个点内部是否有边,如果有边和上述判断方法一样,否则看黑点和白点的权值是否相等即可。

读题不仔细,报零两行泪

#include <cstdio>
#include <vector>
#include <cstring>
using namespace std;
#define ll long long
const int M = 100005;
int read()
{
    int x=0,flag=1;
    char c;
    while((c=getchar())<'0' || c>'9') if(c=='-') flag=-1;
    while(c>='0' && c<='9') x=(x<<3)+(x<<1)+(c^48),c=getchar();
    return x*flag;
}
int T,n,m,k,p,a[M],x[M],y[M],bel[M],col[M],tag[M];
ll sum[M],sa,sb,tg;vector<int> g[M],h[M];
void dfs1(int u,int c)
{
    bel[u]=c;sum[c]+=a[u];
    for(int i=0;i<g[u].size();i++)
    {
        int v=g[u][i];
        if(!bel[v]) dfs1(v,c);
    }
}
int dfs2(int u,int c)
{
    if(col[u]!=-1) return col[u]==c;
    col[u]=c;tg|=tag[u];
    if(c==0) sa+=sum[u];
    else sb+=sum[u];
    bool f=1;
    for(int i=0;i<h[u].size();i++)
    {
        int v=h[u][i];
        f&=dfs2(v,c^1);
    }
    return f;
}
int main()
{
    T=read();
    while(T--)
    {
        n=read();m=read();k=p=0;
        for(int i=1;i<=n;i++)
        {
            h[i].clear();g[i].clear();
            a[i]=read();
        }
        for(int i=1;i<=n;i++)
            a[i]=read()-a[i];
        for(int i=1;i<=m;i++)
        {
            int op=read(),a=read(),b=read();
            if(op==1)
                x[++k]=a,y[k]=b;
            else
            {
                g[a].push_back(b);
                g[b].push_back(a);
            }
        }
        memset(bel,0,sizeof bel);
        memset(sum,0,sizeof sum);
        memset(tag,0,sizeof tag);
        for(int i=1;i<=n;i++)
            if(!bel[i])
                dfs1(i,++p);
        for(int i=1;i<=k;i++)
            if(bel[x[i]]==bel[y[i]])
                tag[bel[x[i]]]=1;
            else
            {
                h[bel[x[i]]].push_back(bel[y[i]]);
                h[bel[y[i]]].push_back(bel[x[i]]);
            }
        memset(col,-1,sizeof col);
        bool f=1;
        for(int i=1;i<=p;i++)
            if(col[i]==-1)
            {
                sa=sb=0;tg=0;
                if(dfs2(i,0))
                {
                    if(tg) f&=(sa+sb)%2==0;
                    else f&=(sa==sb);
                }
                else f&=(sa+sb)%2==0;
            }
        puts(f?"YES":"NO");
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值