一、题目
二、解法
本题的关键是选 n 2 + 1 \frac{n}{2}+1 2n+1个数,题目可以转化为选出来的数大于剩下的数。
有一个技巧是分组,我们可以先按 a a a排序,每两个分为一组,每一组优先选 b b b大的,那么就可以保证 b b b方面可以满足,由于我们可以多选一个数,我们选多一个靠前的 a a a,那么就可以保证能满足 a a a的条件(因为前一组的 a a a一定比后一组的 a a a大)
#include <cstdio>
#include <algorithm>
using namespace std;
const int M = 100005;
int read()
{
int num=0,flag=1;
char c;
while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
while(c>='0'&&c<='9')num=(num<<3)+(num<<1)+(c^48),c=getchar();
return num*flag;
}
int n,m,ans[M];
struct node
{
int x,y,id;
bool operator < (const node &b) const
{
return x<b.x;
}
}a[M];
signed main()
{
n=read();
for(int i=1;i<=n;i++)
a[i].x=read();
for(int i=1;i<=n;i++)
{
a[i].y=read();
a[i].id=i;
}
sort(a+1,a+1+n);
for(int i=1;i<=(n-1)/2;i++)
{
int u=2*i-1,v=2*i;
if(a[u].y>a[v].y) ans[++m]=a[u].id;
else ans[++m]=a[v].id;
}
if(n%2) ans[++m]=a[n].id;
else ans[++m]=a[n-1].id,ans[++m]=a[n].id;
printf("%d\n",m);
for(int i=1;i<=m;i++)
printf("%d ",ans[i]);
}