一、题目
二、解法
这道题主要考察构造,一种方法是从位置 k k k展开, k k k填 a [ k ] a[k] a[k], k − 1 k-1 k−1填 a [ k ] + a [ k − 1 ] a[k]+a[k-1] a[k]+a[k−1]…以此类推。
这种构造需要保证 a [ k ] > a [ k − 1 ] , a [ k ] + a [ k − 1 ] > a [ k − 2 ] . . . a[k]>a[k-1],a[k]+a[k-1]>a[k-2]... a[k]>a[k−1],a[k]+a[k−1]>a[k−2]...,所以 a [ k ] a[k] a[k]应该是最大的数并且前一个数比他小,但是你会发现还是 w a wa wa了,因为存在这一种情况:0 0 0 100 0,这种做法就挂掉了。
解决方法就是把 k − 1 k-1 k−1填入 2 a [ k ] + a [ k − 1 ] 2a[k]+a[k-1] 2a[k]+a[k−1](其他也一样),就能保证 b [ k + 1 ] > a [ k ] b[k+1]>a[k] b[k+1]>a[k],还有一种全 0 0 0的情况需要特判。
#include <cstdio>
#define int long long
const int M = 150005;
int read()
{
int num=0,flag=1;char c;
while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
while(c>='0'&&c<='9')num=(num<<3)+(num<<1)+(c^48),c=getchar();
return num*flag;
}
int n,k=-1,ma,flag,a[M],b[M];
signed main()
{
n=read();
for(int i=0;i<n;i++)
a[i]=read();
for(int i=0;i<n;i++)
{
if(a[i]>0) flag=1;
if(ma<a[i] && a[i]>a[(i-1+n)%n])
{
ma=a[i];
k=i;
}
}
if(!flag)
{
puts("YES");
for(int i=0;i<n;i++)
printf("1 ");
return 0;
}
if(k==-1)
{
puts("NO");
return 0;
}
b[k]=a[k];
k=(k-1+n)%n;
b[k]=b[(k+1)%n]*2+a[k];
for(int i=1;i<n-1;i++)
{
k=(k-1+n)%n;
b[k]=b[(k+1)%n]+a[k];
}
puts("YES");
for(int i=0;i<n;i++)
printf("%lld ",b[i]);
}