[CF1028E]Restore Array

本文深入探讨了一种基于余数的构造算法,通过分析构造条件和限制,提出了有效的构造策略。文章详细解释了如何确保余数小于除数,以及如何在环状结构中找到合适的构造起点,最终给出了一段实现该算法的C++代码。

题目

传送门 to luogu

思路

由于是余数,所以我们的限制很宽松,故而构造很容易。假如我们已经确定了一个 a i a_i ai ,那么 a i − 1 a_{i-1} ai1 也很容易构造出一个,无非是 k a i + b i − 1 ka_i+b_{i-1} kai+bi1 的形式。但是!能够构造成功有一个充要条件:

一定要 a i > b i − 1 a_i>b_{i-1} ai>bi1 才行,余数不能比除数大!为了让该条件始终满足,我们在构造时使得 a i − 1 > b i − 2 a_{i-1}>b_{i-2} ai1>bi2 即可,而这是容易做到的。

继续思考,一定存在一个 a i < a i + 1 a_i<a_{i+1} ai<ai+1 。为何?反证法易得。毕竟这是一个环,不可能单调,除非全相同。所以我们知道,一定存在一个 a i = b i a_i=b_i ai=bi ,或者所有 b b b 都是 0 0 0 。第二种情况特判,忽略它。第一种情况,应该是哪一个 a i = b i a_i=b_i ai=bi ,能够让我们成功构造呢?

a i > b i − 1 a_i>b_{i-1} ai>bi1 b i > b i − 1 b_i>b_{i-1} bi>bi1 的那一个。这是由前面的充要条件得到的。

会不会所有 b b b 都相等?只有全 0 0 0 可以。其他情况下都不行。原因就是上面的那点:一定 存在一个 a i = b i a_i=b_i ai=bi 。但是它前面的一个无法满足题意——无论 i i i 是谁。

最后构造出来就很简单了。每次尽量都让 a a a 较小,能够满足条件,因为每次最大是 a i − 1 = b i − 2 + a i a_{i-1}=b_{i-2}+a_i ai1=bi2+ai ,也就是 b b b 的累加罢了。

代码

#include <cstdio>
#include <iostream>
#include <vector>
#include <cstring>
using namespace std;
inline int readint(){
	int a = 0; char c = getchar(), f = 1;
	for(; c<'0'||c>'9'; c=getchar())
		if(c == '-') f = -f;
	for(; '0'<=c&&c<='9'; c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}
template < class T >
void getMax(T&a,const T&b){if(a<b)a=b;}
template < class T >
void getMin(T&a,const T&b){if(b<a)a=b;}

const int MaxN = 140582;
int b[MaxN<<1], n;
long long a[MaxN<<1];

int main(){
	n = readint(); int st = -1;
	for(int i=0; i<n; ++i)
		b[i] = b[i+n] = readint();
	for(int i=n; i<n*2; ++i)
		if(b[i-1] < b[i])
			a[i] = b[i], st = i;
	if(st == -1) // 全相同
		if(!b[n]) // 全为0
			for(int i=0; i<n; ++i)
				a[i] = 1;
		else{ puts("NO"); return 0; }
	else{
		for(int i=st-1; i>st-n; --i){
			a[i] = b[i-1]/a[i+1]*a[i+1]+b[i];
			if(a[i] <= b[i-1]) a[i] += a[i+1];
		}
		for(int i=n; i<2*n&&a[i]; ++i)
			a[i-n] = a[i];
	}
	puts("YES");
	for(int i=0; i<n; ++i)
		printf("%lld ",a[i]);
	return 0;
}
内容概要:本文围绕基于机器学习的网络入侵检测展开研究,提出采用随机森林(Random Forest, RF)模型实现对网络流量中异常行为的高效识别。系统以KDD 99公开数据集为基础,通过数据预处理、特征提取(如包长、协议类型、源IP、目标端口等)、模型训练与优化等步骤,构建随机森林分类模型。研究强调该算法在检测准确率、泛化能力及抗噪性方面的优势,测试结果显示模型准确率达98.65%,具备低误报率和高实时性。系统还集成Flask框架与Vue技术实现前后端交互及可视化展示,支持攻击类型统计、地理分布分析等功能,并通过单元测试、性能测试和安全测试验证系统稳定性与可靠性。; 适合人群:具备一定机器学习基础和Python编程能力的本科及以上学生、网络安全研究人员或初级开发人员。; 使用场景及目标:①应用于高校科研或毕业设计,深入理解机器学习在网络入侵检测中的实际应用;②为中小型组织提供低成本、高效的入侵检测解决方案原型;③学习如何将机器学习模型与Web系统集成,实现从数据处理到可视化展示的完整流程。; 阅读建议:建议结合代码实践,重点关注数据预处理、特征工程与随机森林模型调优部分,同时可拓展对比其他算法(如SVM、神经网络)在相同数据集上的表现,以深化对模型选型的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值