一、题目
二、解法
这道题的roundness
最大其实是要乘积质因数分解后
2
2
2和
5
5
5较小的那个最大,都要放入状态中,设
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j]为选了
i
i
i件物品,因数
5
5
5的个数为
j
j
j,得到的最大因数
2
2
2的个数,转移:
d
p
[
i
]
[
j
]
=
d
p
[
i
−
1
]
[
j
−
f
i
v
e
[
i
]
]
+
t
w
o
[
i
]
dp[i][j]=dp[i-1][j-five[i]]+two[i]
dp[i][j]=dp[i−1][j−five[i]]+two[i]转移时注意一下顺序都要从大到小。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define int long long
const int M = 205;
int read()
{
int x=0,f=1;char c;
while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
return x*f;
}
int n,m,ans,a[M],b[M],dp[M][6005];
signed main()
{
n=read();m=read();
for(int i=1;i<=n;i++)
{
int x=read();
while(x%5==0) a[i]++,x/=5;
while(x%2==0) b[i]++,x/=2;
}
memset(dp,-1,sizeof dp);
dp[0][0]=0;
for(int i=1;i<=n;i++)
for(int j=m;j>=0;j--)
for(int k=6000;k>=0;k--)
{
if(j>=1 && k>=a[i] && dp[j-1][k-a[i]]!=-1)
dp[j][k]=max(dp[j][k],dp[j-1][k-a[i]]+b[i]);
}
for(int i=0;i<=6000;i++)
ans=max(ans,min(i,dp[m][i]));
printf("%lld\n",ans);
}