CF837D Round Subset

一、题目

点此看题

二、解法

这道题的roundness最大其实是要乘积质因数分解后 2 2 2 5 5 5较小的那个最大,都要放入状态中,设 d p [ i ] [ j ] dp[i][j] dp[i][j]为选了 i i i件物品,因数 5 5 5的个数为 j j j,得到的最大因数 2 2 2的个数,转移:
d p [ i ] [ j ] = d p [ i − 1 ] [ j − f i v e [ i ] ] + t w o [ i ] dp[i][j]=dp[i-1][j-five[i]]+two[i] dp[i][j]=dp[i1][jfive[i]]+two[i]转移时注意一下顺序都要从大到小。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define int long long
const int M = 205;
int read()
{
	int x=0,f=1;char c;
	while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
	while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
	return x*f;
}
int n,m,ans,a[M],b[M],dp[M][6005];
signed main()
{
	n=read();m=read();
	for(int i=1;i<=n;i++)
	{
		int x=read();
		while(x%5==0) a[i]++,x/=5;
		while(x%2==0) b[i]++,x/=2;
	}
	memset(dp,-1,sizeof dp);
	dp[0][0]=0;
	for(int i=1;i<=n;i++)
		for(int j=m;j>=0;j--)
			for(int k=6000;k>=0;k--)
			{
				if(j>=1 && k>=a[i] && dp[j-1][k-a[i]]!=-1)
					dp[j][k]=max(dp[j][k],dp[j-1][k-a[i]]+b[i]);
			}
	for(int i=0;i<=6000;i++)
		ans=max(ans,min(i,dp[m][i]));
	printf("%lld\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值