一、题目
二、解法
剩下 n n n条边,就意味着剩下的图是基环树,把他变成树的最好方法就是找到这个环。
我们可以把这个环缩成一个点,然后跑矩阵树定理就可以知道这样的图有多少个。我们不需要知道这个环长成什么样,只需要知道它由哪些点组成(这样我们才知道是连出去的边),而算这样的环的时候顺序是要考虑的,这指向了一个算法-------状压 d p dp dp,因为它可以用 O ( 2 n ) O(2^n) O(2n)的时间达到 O ( n ! ) O(n!) O(n!)的枚举。
设 d p [ s ] [ v ] dp[s][v] dp[s][v]为状态 s s s连成了一条链,结尾的点是 v v v的环的数量,为了不算重,我们要求新加进来的点必须大于原来最小的编号(相当于我固定了起点),最后判断一下起终点能连起来就计入环的方案。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int M = 20;
const int MOD = 998244353;
#define int long long
int read()
{
int x=0,f=1;char c;
while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
return x*f;
}
int n,m,ans,g[M][M],a[M][M],t[M],id[M];
int dp[1<<16][M],st[1<<16],num[1<<16];
void init()
{
for(int i=1;i<=16;i++)
t[i]=1<<i-1;
for(int i=1;i<(1<<16);i++)
{
st[i]=20;
for(int j=1;j<=16;j++)
if(i&t[j]) st[i]=min(st[i],j);
}
}
void fuck()
{
for(int s=1;s<(1<<n);s++)
for(int u=1;u<=n;u++)
{
if(!dp[s][u]) continue;
for(int v=1;v<=n;v++)
if((s&t[v])==0 && g[u][v] && v>st[s])
dp[s|t[v]][v]=(dp[s|t[v]][v]+dp[s][u])%MOD;
}
for(int s=1;s<(1<<n);s++)
{
int u=st[s],cnt=0;num[s]=0;
for(int v=1;v<=n;v++)
if(s&t[v]) cnt++;
if(cnt<3) continue;
for(int v=1;v<=n;v++)
{
if(s&t[v] && g[u][v])
num[s]=(num[s]+dp[s][v])%MOD;
}
num[s]=num[s]*(MOD/2+1)%MOD;
}
}
int qkpow(int a,int b)
{
int r=1;
while(b>0)
{
if(b&1) r=r*a%MOD;
a=a*a%MOD;
b>>=1;
}
return r;
}
int guass(int n)
{
n--;
for(int i=1;i<=n;i++)
{
if(a[i][i]==0)
for(int j=i+1;j<=n;j++)
if(a[j][i])
{
swap(a[i],a[j]);
ans=-ans;
}
if(!a[i][i]) return 0;
for(int j=i+1;j<=n;j++)
{
int t=a[j][i]*qkpow(a[i][i],MOD-2)%MOD;
for(int k=i;k<=n;k++)
a[j][k]=(a[j][k]-a[i][k]*t)%MOD;
}
}
int ans=1;
for(int i=1;i<=n;i++)
ans=ans*a[i][i]%MOD;
return ans;
}
void solve()
{
for(int s=1;s<(1<<n);s++)
{
if(!num[s]) continue;
int cnt=1;
for(int i=1;i<=n;i++)
{
if(s&t[i]) id[i]=1;
else id[i]=++cnt;
}
memset(a,0,sizeof a);
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
if(g[i][j] && id[i]!=id[j])
{
a[id[i]][id[i]]++;
a[id[j]][id[j]]++;
a[id[i]][id[j]]--;
a[id[j]][id[i]]--;
}
int tmp=guass(cnt);
ans=(ans+tmp*num[s])%MOD;
}
printf("%lld\n",(ans+MOD)%MOD);
}
signed main()
{
init();
while(~scanf("%lld %lld",&n,&m))
{
memset(g,0,sizeof g);ans=0;
for(int i=0;i<(1<<n);i++)
for(int j=1;j<=n;j++)
dp[i][j]=0;
for(int i=1;i<=m;i++)
{
int u=read(),v=read();
g[u][v]++;g[v][u]++;
dp[t[u]|t[v]][max(u,v)]++;
}
fuck();
solve();
}
}