一、题目
二、解法
先弄清楚本题要求什么,实际上那个到 1 1 1的距离就是个摆设,因为我们可以直接求 d i j k s t r a \tt dijkstra dijkstra,那么问题就变成了 保留水位线大于 p p p的边, u u u所在块连通性是怎样的,我们只需要把这个维护出来就行了。
第一种显然的思路是可持久化并查集,太麻烦了。 k r u s k a l l \tt kruskall kruskall重构树可以很好的解决这个问题,想象我们需要的边只可能是最大生成树上的边,如果我们在跑生成树的时候构建重构树,那么就具有下列性质:
- 点代表的是生成树的边,而且点权(也就是边权)构成一个小根堆。
- 重构树的叶子节点是原图的节点。
- 某个点的子树就代表在这个水位线的联通情况,也就是叶子联通。
那么做法也就呼之欲出了,结合性质 1 1 1,我们可以通过倍增找到大于这个水位线的最浅的点,结合性质二,这个点子树内的最小距离就是答案。
常数异常的小,在 l u o g u \tt luogu luogu上直接跑到了 r a n k 1 \tt rank1 rank1
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int M = 400005;
int read()
{
int num=0,flag=1;char c;
while((c=getchar())<'0'||c>'9')if(c==