[NOI2018] 归程

本文详细介绍了NOI2018中一道题目的解法,主要探讨如何利用Dijkstra算法和Kruskal重构树解决保留水位线大于特定值的边时,图的连通性问题。通过重构树的性质,可以高效地找到超过水位线的最浅边,并得出相应联通部分的最小距离。
摘要由CSDN通过智能技术生成

一、题目

点此看题

二、解法

先弄清楚本题要求什么,实际上那个到 1 1 1的距离就是个摆设,因为我们可以直接求 d i j k s t r a \tt dijkstra dijkstra,那么问题就变成了 保留水位线大于 p p p的边, u u u所在块连通性是怎样的,我们只需要把这个维护出来就行了。

第一种显然的思路是可持久化并查集,太麻烦了。 k r u s k a l l \tt kruskall kruskall重构树可以很好的解决这个问题,想象我们需要的边只可能是最大生成树上的边,如果我们在跑生成树的时候构建重构树,那么就具有下列性质:

  • 点代表的是生成树的边,而且点权(也就是边权)构成一个小根堆。
  • 重构树的叶子节点是原图的节点。
  • 某个点的子树就代表在这个水位线的联通情况,也就是叶子联通。

那么做法也就呼之欲出了,结合性质 1 1 1,我们可以通过倍增找到大于这个水位线的最浅的点,结合性质二,这个点子树内的最小距离就是答案。

常数异常的小,在 l u o g u \tt luogu luogu上直接跑到了 r a n k 1 \tt rank1 rank1

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue> 
using namespace std;
const int M = 400005;
int read()
{
   
    int num=0,flag=1;char c;
    while((c=getchar())<'0'||c>'9')if(c==
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值