1.证明:任意奇数的平方减1是8的倍数
设这个奇数为 2 k + 1 ( k ∈ Z ) 2k + 1 (k \in Z) 2k+1(k∈Z),则
(
2
k
+
1
)
2
−
1
(2k + 1) ^ 2 - 1
(2k+1)2−1
=
4
k
2
+
4
k
+
1
−
1
= 4k ^ 2 + 4k + 1 - 1
=4k2+4k+1−1
=
4
k
2
+
4
k
= 4k ^ 2 + 4k
=4k2+4k
=
4
k
(
k
+
1
)
= 4k (k + 1)
=4k(k+1)
若
k
m
o
d
2
=
1
k \bmod 2 = 1
kmod2=1
则
k
+
1
m
o
d
2
=
0
k + 1 \bmod 2 = 0
k+1mod2=0
所以
8
∣
4
(
k
+
1
)
8 \mid 4(k + 1)
8∣4(k+1)
所以
8
∣
4
k
(
k
+
1
)
8 \mid 4k (k + 1)
8∣4k(k+1)
若
k
m
o
d
2
=
0
k \bmod 2 = 0
kmod2=0
同理可得:
8
∣
4
k
8 \mid 4k
8∣4k
所以
8
∣
4
k
(
k
+
1
)
8 \mid 4k (k + 1)
8∣4k(k+1)
综上所述:
8
∣
4
k
(
k
+
1
)
8 \mid 4k (k + 1)
8∣4k(k+1)
即证
2.证明:
(1)当 2 ∣ n 2 \mid n 2∣n时, 2 ∣ 3 n + 1 2 \mid 3 ^ n + 1 2∣3n+1
因
为
3
n
≡
1
n
(
m
o
d
2
)
因为3 ^ n \equiv 1 ^ n \pmod 2
因为3n≡1n(mod2)
又
∵
1
n
+
1
≡
0
(
m
o
d
2
)
又∵1 ^ n + 1 \equiv 0 \pmod 2
又∵1n+1≡0(mod2)
∴
3
n
+
1
≡
0
(
m
o
d
2
)
∴3 ^ n + 1 \equiv 0 \pmod 2
∴3n+1≡0(mod2)
即
2
∣
3
n
+
1
即2 \mid 3 ^ n + 1
即2∣3n+1
即证
(2)当 n ≡ 1 ( m o d 2 ) n \equiv 1 \pmod 2 n≡1(mod2), 2 2 ∣ 3 n + 1 2 ^ 2 \mid 3 ^ n + 1 22∣3n+1
令
T
i
=
3
i
+
1
T_i = 3 ^ i + 1
Ti=3i+1
则
T
i
=
(
T
i
−
2
−
1
)
×
9
+
1
T_i = (T_{i - 2} - 1) \times 9 + 1
Ti=(Ti−2−1)×9+1
若
4
∣
T
i
−
2
4 \mid T_{i - 2}
4∣Ti−2
⇒
T
i
m
o
d
4
=
(
(
(
T
i
−
2
m
o
d
4
)
−
(
1
m
o
d
4
)
)
×
9
m
o
d
4
+
1
)
m
o
d
4
\Rightarrow T_i \bmod 4 = (((T_{i - 2} \bmod 4) - (1 \bmod 4)) \times 9 \bmod 4 + 1) \bmod 4
⇒Timod4=(((Ti−2mod4)−(1mod4))×9mod4+1)mod4
⇒
T
i
m
o
d
4
=
[
(
0
−
1
)
×
9
m
o
d
4
+
1
]
m
o
d
4
\Rightarrow T_i \bmod 4 = [(0 - 1) \times 9 \bmod 4 + 1] \bmod 4
⇒Timod4=[(0−1)×9mod4+1]mod4
⇒
T
i
m
o
d
4
=
(
3
+
1
)
m
o
d
4
\Rightarrow T_i \bmod 4 = (3 + 1) \bmod 4
⇒Timod4=(3+1)mod4
⇒
T
i
m
o
d
4
=
0
\Rightarrow T_i \bmod 4 = 0
⇒Timod4=0
⇒
4
∣
T
i
\Rightarrow 4 \mid Ti
⇒4∣Ti
又
∵
4
∣
T
1
又∵4 \mid T1
又∵4∣T1
所以
4
∣
T
i
(
i
≡
1
(
m
o
d
2
)
)
4 \mid T_i (i \equiv 1 \pmod 2)
4∣Ti(i≡1(mod2))
即证