1.前言
还是对扩展中国剩余定理不熟,稍微变了一下就蒙了……
2.题解
首先用各种方法找到每条龙对应的剑。
根据题意,可以列出一下方程
a t k i x ≡ a i ( m o d p i ) atk_ix \equiv a_i \pmod {p_i} atkix≡ai(modpi)
发现我们平时的扩展中国剩余定理有一个美妙的要求 a t k i = 1 atk_i = 1 atki=1,所以我们要拼尽全力去满足这个要求。
我们先不考虑必须把龙的生命值打成非正数这个条件。
我们要表达原方程中 x x x 的取值, x x x 可取的条件是 ∃ y ∈ Z , 满 足 a t k i x + p i y = a i \exists y \in Z, 满足 atk_ix + p_i y = a_i ∃y∈Z,满足atkix+piy=ai,则我们用扩展欧几里得解出 x x x 的一组特解 ( x ′ ) (x') (x′)后,可得 x ∈ { x ′ ′ ∣ x ′ ′ = x ′ + k p i g c d ( p i , a t k i ) , k ∈ Z } x \in \{x''\mid x'' = x' + k \frac{p_i}{gcd (p_i, atk_i)},k \in Z \} x∈{ x′′∣x