大家好!我是CSRobot,从今天开始,我将会发布一些技术文章,内容就是结合春招以来的面试所遇到的问题进行分享,首先会对知识点进行一个探讨和整理,在最后会给出一些面试题并作出解答,希望可以帮助到大家!今天知识点是HashMap,今天来讲解JDK1.8版本下的HashMap。今天会分从以下几个方面进行探讨:
- jdk1.8下HashMap重要属性
- 构造方法
- put过程
- 面试题分享
一、HashMap
1、JDK1.8下的HashMap
JDK1.8下的HashMap相较于JDK1.7下最主要的变化就是新增了红黑树的实现方式。如果发生hash冲突,HashMap首先会将同一个桶中的数据以链表的形式存储,但是如果发生hash冲突的概率比较高,就会导致同一个桶中的链表长度过长,遍历效率降低,在JDK1.8中如果链表长度到达阀值(默认是8),就会将链表转换成红黑树。
1)先看几个重要的参数
在其中最主要的参数和JDK1.7没有太大的区别,包括像初始容量等等,可以参考上一篇文章。这里主要讲述新增的一些参数属性
- 当链表转为红黑树的阙值,也就是当单链上节点数大于等于8时,该链转为红黑树
static final int TREEIFY_THRESHOLD = 8;
- 红黑树转为链表的阙值,也就是当单链上节点数小于等于6时,该链转为链表;
static final int UNTREEIFY_THRESHOLD = 6;
2)构造方法
HashMap的构造方法有三种,分别是无参构造,带容量的有参构造,带容量和loadfactor的有参构造;而在我们使用场景下一般都是使用无参构造。选择无参构造其实也是调用了默认的容量大小和默认的装载因子。
对于无参构造,那么只是指定装载因子,初始容量在插入元素之后进行指定。
对于有参构造,会使用tableSizeFor()方法指定扩容阙值的大小,不大于initialCapacity的最大2的幂次方数。
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
}
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
3)put过程
- 首先判断数组是否初始化,如果没有,进行初始化,初始容量16,阙值12
- (n-1)&hash计算插入数组位置,如果该位置为空那么直接插入节点
- 如果不为空,那么判断该节点的类型,如果是红黑树,按照红黑树的插入方法
- 如果不是红黑树,遍历整个链表,如果没有相同的元素,那么在链表末尾插入新节点;如果有相同的元素,就替换并返回旧值
- 插入元素之后判断链表是否大于7,如果大于转为红黑树
- 插入完成之后判断节点数是否大于阙值,如果大于,那么扩容
public V put(K key, V value) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//当桶为null,进行初始化,resize方法完成了HashMap的初始化和扩容——见源码①
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//当要插入桶的位置为null,直接创建新节点插入该位置
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
//当桶的链表首位置hash和key等于要插入的节点,直接替换
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//按照红黑树的插入方式
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//当头节点没有发生碰撞时,向下遍历链表
else {
for (int binCount = 0; ; ++binCount) {
//直到遍历到链表结尾
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//临界值大于TREEIFY_THRESHOLD转为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//当在链表中发现有相同元素,跳出循环,后续代码覆盖操作
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//如果有旧值那么返回旧节点的value
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
//插入之后判断是否扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
-
源码①—resize(),初始化HashMap和扩容
这个方法比较长,前半段完成了HashMap的初始化,后半段完成了HashMap的扩容,具体见下面代码注释
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; //首先判断table是否为null,如果为null那么oldCap=0 int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; //当oldCap大于0, if (oldCap > 0) { //此处判断oldCap是否越界,如果越界,直接返回旧Table if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } //如果没有越界,对oldCap进行两倍扩容,并将threshold更新为原来的两倍 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } //如果只是threshold大于0,说明初始化没有定义HashMap容量,此时直接将容量设为threshold else if (oldThr > 0) newCap = oldThr; //如果都没有指定,那么使用默认的容量16和阙值threshold else { newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) //此处一是对数组初始化,二是如果是扩容,那么创建两倍容量的新Table Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; //将旧Table中的节点转移到新Table中 if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; //如果是单节点,直接插入到新Table中 if (e.next == null) newTab[e.hash & (newCap - 1)] = e; //如果该链是树结构,那么将树上的节点插入到新Table中 else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); //如果是链表,尾插法插入到新Table中 else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
4)JDK1.8下的HashMap变化
-
**底层使用数组+链表+红黑树实现 **
-
初始化:无参构造只指定装载因子,不会进入到默认有参构造方法中,
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
//此时会定义threshold为大于initialCapacity的2次方数
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
- key的hash计算
相较于JDK1.7简化了许多,直接使用key值的hash和它的高16位进行异或运算,保证了返回的hash值具有高16位和低16位的特征,避免了hash值冲突、插入数据冲突
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
-
哈希冲突时插入方法改为尾插法
-
JDK1.7是先扩容后插入,JDK1.8是先插入后扩容
-
如果链表小于等于6树还原转为链表,大于等于8转为树
-
1.7中扩容之后rehash,重新计算元素的位置,;在1.8中,两倍扩容,新的位置要么为原位置,要么为原位置+旧桶的长度(主要看新桶长度的1位置对应元素的Hash位置为1还是0,要是为1,位置=原位置+旧桶长度;否则为原位置不变)
三、总结
- 重点关注上文提到的JDK1.8下的HashMap的改进,这一部分一般是面试常考
四、面试题
1、JDK1.8下的HashMap的改进?
见上文总结
2、JDK1.8下HashMap的put过程?
- 首先判断数组是否初始化,如果没有,进行初始化,初始容量16,阙值12
- (n-1)&hash计算插入数组位置,如果该位置为空那么直接插入节点
- 如果不为空,那么判断该节点的类型,如果是红黑树,按照红黑树的插入方法
- 如果不是红黑树,遍历整个链表,如果没有相同的元素,那么在链表末尾插入新节点;如果有相同的元素,就替换并返回旧值
- 插入元素之后判断链表是否大于7,如果大于转为红黑树
- 插入完成之后判断节点数是否大于阙值,如果大于,那么扩容
3、JDK1.8下HashMap为什么转为红黑树?链表长度为8转为红黑树为6转回链表,为什么不是7?
从注释中我们可以看到,虽然红黑树的遍历速度很快,但是转化为树结构和生成树的时间并不会太短, 只有当节点足够多的时候,才会使用树节点 。那么当节点较少的时候,虽然时间复杂度红黑树比链表更好,但是 红黑树所占空间比较大,所以使用链表+红黑树的组合会更加平衡。
而我们也可以从注释中看到一个链表的长度大于7的概率是非常小的,链表中节点数是8的概率已经接近千万分之一 。此时链表的性能已经很差了,在这种比较罕见和极端的情况下,才会把链表转变为红黑树
选择6和8的原因是:
中间有个差值7可以防止链表和树之间频繁的转换。假设一下,如果设计成链表个数超过8则链表转换成树结构,链表个数小于8则树结构转换成链表,如果一个HashMap不停的插入、删除元素,链表个数在8左右徘徊,就会频繁的发生树转链表、链表转树,效率会很低
。那么当节点较少的时候,虽然时间复杂度红黑树比链表更好,但是 红黑树所占空间比较大,所以使用链表+红黑树的组合会更加平衡。
而我们也可以从注释中看到一个链表的长度大于7的概率是非常小的,链表中节点数是8的概率已经接近千万分之一 。此时链表的性能已经很差了,在这种比较罕见和极端的情况下,才会把链表转变为红黑树
选择6和8的原因是:
中间有个差值7可以防止链表和树之间频繁的转换。假设一下,如果设计成链表个数超过8则链表转换成树结构,链表个数小于8则树结构转换成链表,如果一个HashMap不停的插入、删除元素,链表个数在8左右徘徊,就会频繁的发生树转链表、链表转树,效率会很低