[BZOJ3209]花神的数论题(数位dp)

传送门 http://www.lydsy.com/JudgeOnline/problem.php?id=3209


之前用这位dalao的blog学的数位dp,模版也出自他,他讲的很不错!感谢他!!
一眼数位dp,想起来之前学了又放下没做的数位dp,于是就做了一下。
原问题为,1~N的数中每个数的1的个数的乘积
一开始想有什么玄学的数学做法,后来一想!
我们只要把问题转化为:枚举有k个1(因为最高才60个1),通过数位dp计算有多少个数含有k个1,最后用快速幂将结果累加即可


code:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int mod=10000007;
ll n;
ll dp[60][60];//dp[i][k]表示 最高位为i位,里面有k个1,这样的数的个数 
int a[60];
ll pow_mod(ll a,ll b) 
{
    ll ans=1;
    while(b)
    {
        if (b&1) ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}
ll dfs(int i,int k,bool limit)
{
    if(k>i) return 0;
    if(i==0 && k==0) return 1;
    if(i==0) return 0;
    if(!limit && dp[i][k]!=-1) return dp[i][k];

    int up=limit?a[i]:1;
    ll ans=0;
    for (int j=0;j<=up;j++)
    {
        if(j==0) ans+=dfs(i-1,k,  limit&&j==a[i]);
        if(j==1) ans+=dfs(i-1,k-1,limit&&j==a[i]);  
    }
    if(!limit) dp[i][k]=ans;
    return ans;
}
int main()
{
    scanf("%lld",&n);
    memset(dp,-1,sizeof(dp));
    int len=0;
    while(n)
    {
        a[++len]=n&1;
        n>>=1;
    }
    ll ans=1,k;
    for(int i=1;i<=len;i++)//枚举k的个数 
    {
        k=dfs(len,i,true);
        if(k) ans=ans*pow_mod(i,k)%mod;
    }
    printf("%lld",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值