传送门
题意:
维护一个文本编辑器,里面的一个字符可以表示为一个数字,有五种操作:
I x :在当前光标位置之后插入一个整数x,插入之后光标移动到x后
D :删除光标之前的一个整数
L :光标向前移动一个位置
R :光标向后移动一个位置
Q k :询问在位置k之前的最大前缀和,k不超过当前光标位置
又见文本编辑器。。。
这回又是另一个编辑器,NOI那道Editor和AHOI那道Editor有成段的操作,需要用splay或者STL_rope去实现,但是这一道不需要,因为所有的操作都只关于一个位置。
那么我们就要用到对顶栈的思想,我们需要维护两个栈A、B,A栈维护开头到光标位置,B栈维护光标位置到结尾位置,那么A栈的栈顶就是我们当前需要处理的。
那么对于插入和删除操作,我们只需要对将新的整数进A栈或者将A栈栈顶出栈。对于光标的前后移动,我们只需要将AB的栈顶来回弹即可。
对于最大前缀和,我们要维护一个sum前缀和数组和一个f来维护最大前缀和。
每当我们插入一个新的数到A栈的时候(I操作和R操作)我们都需要维护一下sum和f,设A栈的栈顶为tpA那么我们这样维护
sum[tpA]=sum[tpA−1]+A[tpA]
s
u
m
[
t
p
A
]
=
s
u
m
[
t
p
A
−
1
]
+
A
[
t
p
A
]
f[tpA]=max(f[tpA−1],sum[tpA])
f
[
t
p
A
]
=
m
a
x
(
f
[
t
p
A
−
1
]
,
s
u
m
[
t
p
A
]
)
注意:栈顶来回弹的时候判断栈是否为空
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=1000010;
const int INF=1e9;
int A[N],B[N],tpA,tpB;
int sum[N],f[N];
char ss[10];
int main()
{
int Q;
while(~scanf("%d",&Q)){
sum[0]=0,f[0]=-INF; tpA=0,tpB=0;
while(Q--)
{
scanf("%s",ss+1);
if(ss[1]=='I')
{
int x;scanf("%d",&x);
A[++tpA]=x;
sum[tpA]=sum[tpA-1]+x;
f[tpA]=max(f[tpA-1],sum[tpA]);
}
if(ss[1]=='D') tpA--;
if(ss[1]=='L')
{
if(tpA)
{
int x=A[tpA]; tpA--;
B[++tpB]=x;
}
}
if(ss[1]=='R')
{
if(tpB)
{
int x=B[tpB]; tpB--;
A[++tpA]=x;
sum[tpA]=sum[tpA-1]+x;
f[tpA]=max(f[tpA-1],sum[tpA]);
}
}
if(ss[1]=='Q')
{
int k;scanf("%d",&k);
printf("%d\n",f[k]);
}
}
}
return 0;
}