[HDU4699]Editor(对顶栈)

本文介绍了如何利用对顶栈解决一种文本编辑器的问题,该编辑器涉及插入、删除、光标移动等操作。通过维护两个栈A和B,分别对应光标前后的位置,实现对操作的高效处理。同时,通过sum前缀和数组和f数组来维护最大前缀和,确保在Q操作询问时能快速得到答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门
题意:
维护一个文本编辑器,里面的一个字符可以表示为一个数字,有五种操作:
I x :在当前光标位置之后插入一个整数x,插入之后光标移动到x后
D :删除光标之前的一个整数
L :光标向前移动一个位置
R :光标向后移动一个位置
Q k :询问在位置k之前的最大前缀和,k不超过当前光标位置


又见文本编辑器。。。
这回又是另一个编辑器,NOI那道EditorAHOI那道Editor有成段的操作,需要用splay或者STL_rope去实现,但是这一道不需要,因为所有的操作都只关于一个位置。
那么我们就要用到对顶栈的思想,我们需要维护两个栈A、B,A栈维护开头到光标位置,B栈维护光标位置到结尾位置,那么A栈的栈顶就是我们当前需要处理的。
那么对于插入和删除操作,我们只需要对将新的整数进A栈或者将A栈栈顶出栈。对于光标的前后移动,我们只需要将AB的栈顶来回弹即可。
对于最大前缀和,我们要维护一个sum前缀和数组和一个f来维护最大前缀和。
每当我们插入一个新的数到A栈的时候(I操作和R操作)我们都需要维护一下sum和f,设A栈的栈顶为tpA那么我们这样维护
sum[tpA]=sum[tpA1]+A[tpA] s u m [ t p A ] = s u m [ t p A − 1 ] + A [ t p A ]
f[tpA]=max(f[tpA1],sum[tpA]) f [ t p A ] = m a x ( f [ t p A − 1 ] , s u m [ t p A ] )
注意:栈顶来回弹的时候判断栈是否为空


#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=1000010;
const int INF=1e9;
int A[N],B[N],tpA,tpB;
int sum[N],f[N];
char ss[10];

int main()
{
    int Q;
    while(~scanf("%d",&Q)){
    sum[0]=0,f[0]=-INF; tpA=0,tpB=0;
    while(Q--)
    {
        scanf("%s",ss+1);
        if(ss[1]=='I')
        {
            int x;scanf("%d",&x);
            A[++tpA]=x;
            sum[tpA]=sum[tpA-1]+x;
            f[tpA]=max(f[tpA-1],sum[tpA]);
        }
        if(ss[1]=='D') tpA--;
        if(ss[1]=='L')
        {
            if(tpA)
            {
                int x=A[tpA]; tpA--;
                B[++tpB]=x;
            }
        }
        if(ss[1]=='R')
        {
            if(tpB)
            {
                int x=B[tpB]; tpB--;
                A[++tpA]=x;
                sum[tpA]=sum[tpA-1]+x;
                f[tpA]=max(f[tpA-1],sum[tpA]);
            }
        }
        if(ss[1]=='Q')
        {
            int k;scanf("%d",&k);
            printf("%d\n",f[k]);
        }
    }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值