稍微整理一下蓝书上数论章节的知识点
1、约数和公式:一个数的约数和= (1+p1+p12+...+p1c1)∗(1+p2+p22+...+p2c2)∗...∗(1+pk+pk2+...+pkck) ( 1 + p 1 + p 1 2 + . . . + p 1 c 1 ) ∗ ( 1 + p 2 + p 2 2 + . . . + p 2 c 2 ) ∗ . . . ∗ ( 1 + p k + p k 2 + . . . + p k c k ) (p为这个数的各个质因数,c表示为各个质因数的次方,k表示质因数个数)
2、1~N中的任何数的不同质因子很少(可以将最小的几个质因子乘起来看具体不会超过多少个),所有质因子的指数总和很小(可以把2(最小质数)求幂,看一下几次幂会超过N确定具体范围)。这个tips是常用的约数类问题突破口,抓住质因数比比较少且指数也比较少这一点可以通过搜索来组成一个数的约数。
3、求一个数的质因数只需要O(sqrt(n))的时间复杂度,先筛出素数,然后将原数除去小素数,如果原数最后不为1,那么这个数肯定也是素数
4、费马小定理: ap≡a(mod p)(p∈prime) a p ≡ a ( m o d p ) ( p ∈ p r i m e )
5、欧拉定理: aφ(n)≡1(mod n)(a,n互质) a φ ( n ) ≡ 1 ( m o d n ) ( a , n 互 质 )
6、欧拉定理推论: ab≡ab mod φ(n)(mod n) a b ≡ a b m o d φ ( n ) ( m o d n )
7、一个正整数n,设它其中一个约数为p,那么 gcd(i,n)=p