OpenCVSharp 笔记15 HSV图像介绍以及转换方法

本文详细介绍了RGB颜色模型的工作原理,对比了HSV颜色模型的直观特性,并提供了RGB到HSV的转换算法实现。重点展示了如何在OpenCV中使用自定义函数与库函数进行颜色空间转换,并通过示例展示了转换结果的可视化。
摘要由CSDN通过智能技术生成

1.RGB介绍
RGB是从颜色发光的原理来设计定的,通俗点说它的颜色混合方式就好像有红、绿、蓝三盏灯,当它们的光相互叠合的时候,色彩相混,而亮度却等于两者亮度之总和,越混合亮度越高,即加法混合。
红、绿、蓝三个颜色通道每种色各分为256阶亮度,在0时“灯”最弱——是关掉的,而在255时“灯”最亮。当三色灰度数值相同时,产生不同灰度值的灰色调,即三色灰度都为0时,是最暗的黑色调;三色灰度都为255时,是最亮的白色调。
在电脑中,RGB的所谓“多少”就是指亮度,并使用整数来表示。通常情况下,RGB各有256级亮度,用数字表示为从0、1、2…直到255。注意虽然数字最高是255,但0也是数值之一,因此共256级。
在这里插入图片描述
2.HSV介绍
HSV是一种比较直观的颜色模型,所以在许多图像编辑工具中应用比较广泛,这个模型中颜色的参数分别是:色调(H, Hue),饱和度(S,Saturation),明度(V, Value)。
色调H
用角度度量,取值范围为0°~360°,从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝色为240°。它们的补色是:黄色为60°,青色为180°,品红为300°;
饱和度S
饱和度S表示颜色接近光谱色的程度。一种颜色,可以看成是某种光谱色与白色混合的结果。其中光谱色所占的比例愈大,颜色接近光谱色的程度就愈高,颜色的饱和度也就愈高。饱和度高,颜色则深而艳。光谱色的白光成分为0,饱和度达到最高。通常取值范围为0%~100%,值越大,颜色越饱和。
明度V
明度表示颜色明亮的程度,对于光源色,明度值与发光体的光亮度有关;对于物体色,此值和物体的透射比或反射比有关。通常取值范围为0%(黑)到100%(白)。
在这里插入图片描述
在这里插入图片描述

3.RGB转化到HSV的算法在这里插入图片描述
转换函数:

        /// <summary>
        /// RGB-HSV 转换函数
        /// </summary>
        /// <param name="RGB">RGB Mat对象</param>
        /// <param name="H_Max">H的最大取值</param>
        /// <param name="S_Max">S的最大取值</param>
        /// <param name="V_Max">V的最大取值</param>
        /// <returns>HSV Mat对象</returns>
        static Mat RGBToHSV(Mat RGB,float H_Max, float S_Max, float V_Max)
        {
           /*我们需要注意的在不同应用场景中,HSV取值范围是不尽相同的。
1.PS软件时,H取值范围是0 - 360,S取值范围是(0 % -100 %),V取值范围是(0 % -100 %)。
2.利用openCV中cvSplit函数的在选择图像IPL_DEPTH_32F类型时,H取值范围是0 - 360,S取值范围是0 - 1(0 % -100 %),V取值范围是0 - 1(0 % -100 %)。
3.利用openCV中cvSplit函数的在选择图像IPL_DEPTH_8UC类型时,H取值范围是0 - 180,S取值范围是0 - 255,V取值范围是0 - 255。*/
            int dims = RGB.Channels();
            if (dims != 3)
            {
                return null;
            }
            Mat HSV = new Mat(RGB.Size(), RGB.Type());
            float H, S, V, min, max;
            float R, G, B;

            for (int row = 0; row < RGB.Rows; row++)
            {
                for (int col = 0; col < RGB.Cols; col++)
                {
                    Vec3b color = RGB.Get<Vec3b>(row, col);
                    R = color.Item0;
                    G = color.Item1;
                    B = color.Item2;

                    R /= 255.0f;
                    G /= 255.0f;
                    B /= 255.0f;

                    max = R;//V = max(R, G, B);
                    if (max < G) max = G;
                    if (max < B) max = B;
                    V = max * V_Max;

                    min = R;
                    if (min > G) min = G;
                    if (min > B) min = B;
                    if (max != 0)
                        S = (max - min) / max * S_Max; 
                    else S = 0;

                    if (R == max) H = (G - B) / (max - min) * H_Max / 6;
                    else if (G == max) H = (2 + (B - R) / (max - min)) * H_Max / 6;
                    else H = (4 + (R - G) / (max - min)) * H_Max / 6;
                    if (H < 0) H = H + H_Max;

                    HSV.Set<Vec3b>(row, col, new Vec3b((byte)H, (byte)S, (byte)V));
                }
            }
            return HSV;
        }

函数调用

        static void Main(string[] args)
        {
            Mat GreenBack = Cv2.ImRead("GreenBack.png", ImreadModes.AnyColor);
            Cv2.ImShow("GreenBack", GreenBack);
            Console.WriteLine("原始图像:");
            Console.WriteLine(Cv2.Format(GreenBack,FormatType.Python).Substring(0,4000));

            Mat hsv = new Mat(GreenBack.Size(), GreenBack.Type());
            Cv2.CvtColor(GreenBack, hsv, ColorConversionCodes.RGB2HSV);
            Cv2.ImShow("hsv", hsv);
            Console.WriteLine("Opencv库函数转换:");
            Console.WriteLine(Cv2.Format(hsv,FormatType.Python).Substring(0, 4000));

            Mat hsv2 = RGBToHSV(GreenBack,180,255,255);
            Cv2.ImShow("hsv2", hsv2);
            Console.WriteLine("自写函数转换:");
            Console.WriteLine(Cv2.Format(hsv2,FormatType.Python).Substring(0, 4000));

            Mat mask = new Mat();
            Cv2.InRange(hsv, new Scalar(34, 43, 46), new Scalar(77, 255, 255), mask);
            Cv2.BitwiseNot(mask, mask);
            Cv2.ImShow("mask", mask);

            Mat RedBack = new Mat(GreenBack.Size(), GreenBack.Type(), new Scalar(40, 40, 255));
            Cv2.CopyTo(GreenBack, RedBack, mask);
            Cv2.ImShow("RedBack", RedBack);

            Cv2.WaitKey();
            Cv2.DestroyAllWindows();
        }

输出图像效果:
在这里插入图片描述
在这里插入图片描述
图1中hsv为Opencv库函数转换结果,hsv2为自写函数转换结果,可以看出并无差别
图2为输出的像素点的数值,可以看到库函数转换结果与自写函数转换结果只有细微差异(这个差异应该来源于最终输出,库函数可能为四舍五入,自写函数直接取整数部分,小数部分丢掉了)

备注:
Cv2.InRange函数调用中。new Scalar(34, 43, 46), new Scalar(77, 255, 255)从何而来呢?请看下图
这两个值中的H,S,V为绿色在HSV中各自的取值范围

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值