原题链接
求长度为n、m(<=1e5)的a,b两组数组一段长度不小于x、y的连续子序列平均最大权值。
分析:
要求一个数组a长度不小于len的连续子序列平均最大权值。
二分答案x,令b[i]=a[i]-x,sum数组为数组b的的前缀和,则要求a数组的连续子序列平均最大权重,即使b数组的连续子序列最大权重和>=0,即是使sum[i]-sum[j]的最大值>=0(j+len<=i)。
对于这题,还启发我们可以用前缀和数组求连续子序列的最大权重和。
int a[maxv],b[maxv];
double sum[maxv];
int n,m,x,y;
bool judge(double x,int a[maxv],int n,int s){
double minSum=0,ans=-1;
for(int i=1;i<=n;i++) sum[i]=sum[i-1]+a[i]-x;
for(int i=0;i<=n-s;i++) minSum=min(minSum,sum[i]),ans=max(ans,sum[i+s]-minSum);
//若所求子序列长度不仅有上限,还有下限,则可以用单调队列维护minSum的值
return ans+eps<=0;
}
double solve(int a[maxv],int n,int s){
double l=0,r=1e6,mid;
while(l+eps<r){
mid=(l+r)/2;
if(judge(mid,a,n,s)) r=mid;else l=mid;
}
return mid;
}
int main(){
scanf("%d %d %d %d",&n,&m,&x,&y);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=m;i++) scanf("%d",&b[i]);
printf("%.7lf",solve(a,n,x)+solve(b,m,y));
return 0;
}