求连续子序列平均最大权值的问题

原题链接
求长度为n、m(<=1e5)的a,b两组数组一段长度不小于x、y的连续子序列平均最大权值。
分析:
要求一个数组a长度不小于len的连续子序列平均最大权值。
二分答案x,令b[i]=a[i]-x,sum数组为数组b的的前缀和,则要求a数组的连续子序列平均最大权重,即使b数组的连续子序列最大权重和>=0,即是使sum[i]-sum[j]的最大值>=0(j+len<=i)。
对于这题,还启发我们可以用前缀和数组求连续子序列的最大权重和。

int a[maxv],b[maxv];
double sum[maxv];
int n,m,x,y;
bool judge(double x,int a[maxv],int n,int s){
    double minSum=0,ans=-1;
    for(int i=1;i<=n;i++) sum[i]=sum[i-1]+a[i]-x;
    for(int i=0;i<=n-s;i++) minSum=min(minSum,sum[i]),ans=max(ans,sum[i+s]-minSum);
    //若所求子序列长度不仅有上限,还有下限,则可以用单调队列维护minSum的值
    return ans+eps<=0;
}
double solve(int a[maxv],int n,int s){
    double l=0,r=1e6,mid;
    while(l+eps<r){
        mid=(l+r)/2;
        if(judge(mid,a,n,s)) r=mid;else l=mid;
    }
    return mid;
}
int main(){
    scanf("%d %d %d %d",&n,&m,&x,&y);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    for(int i=1;i<=m;i++) scanf("%d",&b[i]);
    printf("%.7lf",solve(a,n,x)+solve(b,m,y));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值