目录
1.Gartner:2025年企业机构需要探索的十大战略技术趋势
2.福布斯《2025年十大人工智能趋势:每个人都必须做好准备》
3. IDC FutureScapes:IDC 发布 2025 年全球 IT 行业十大预测
4. Sequoia Capital(红杉资本) :AI in 2025: Building Blocks Firmly in Place
一、前言
2024年,技术迭代的速度加快,人工智能(AI)技术全面爆发。从技术层面到产品应用,再到行业落地,AI正以前所未有的速度重塑世界,重构产业格局,席卷各大赛道。以领域内的典型企业OpenAI为例,其估值在2022年底仅为29亿美元,而到2024年10月初已飙升至1570亿美元,短短不到两年间实现了超过50倍的增长。根据IDC的预测,全球生成式AI市场规模将在2027年接近1500亿美元,复合年增长率高达85.7%。
步入2025年,人工智能将如何发展?AI产业如何从爆发式增长走向深耕实干?企业又该如何通过AI技术推动数字化转型、构建核心竞争力?一系列问题亟待解答。在这场变革浪潮中,持续关注AI的最新发展趋势至关重要。
本期内容,我们特别整理了多家权威机构对2025年人工智能技术发展趋势的预测,与大家一起探讨AI未来的可能方向。(具体内容包括:)
1.《Gartner:2025年企业机构需要探索的十大战略技术趋势》
2.《Forbes:2025年十大人工智能趋势:每个人都必须做好准备》
3.《IDC FutureScapes:Worldwide IT Industry 2025 Predictions》
4.《德勤:Tech Trends 2025》
5.《易观分析:2025年AI产业发展十大趋势》
6.《量子位:2025年度AI十大趋势报告》
7.《Sequoia Capital(红杉资本) :AI in 2025: Building Blocks Firmly in Place》
本期关于2025年AI发展趋势的所有干货,我们也特别汇编了合集,公众号回复“2025AI趋势",即可获取趋势报告合集!
二、技术趋势一览
1.Gartner:2025年企业机构需要探索的十大战略技术趋势
Gartner研究副总裁高挺(Arnold Gao)表示:“今年的重要战略技术趋势涵盖了AI的必要事项和风险,以及计算技术和人机协同等前沿趋势。追踪这些趋势将帮助IT领导者以负责任、和合乎道德的创新方式塑造企业机构的未来。”
以下是2025年重要战略技术趋势。
代理型AI(Agentic AI)
代理型AI通过自主规划和采取行动实现用户定义的目标。代理型AI为实现能够分担和补充人类工作的虚拟劳动力带来了希望。Gartner 预测,到2028年,至少15%的日常工作决策将由代理型AI自主做出,而2024年这一比例为0%。这项技术的目标导向型功能将实现适应性更强、能够完成各种任务的软件系统。
代理型AI有望实现企业首席信息官(CIO)提高生产力的愿望。这一动机促使企业与厂商探索、开创和建立能够提供稳健、安全和可信的代理型AI所需的技术和实践。
AI治理平台(AI Governance Platforms)
AI治理平台是Gartner不断发展的AI信任、风险和安全管理(TRiSM)框架的一部分。AI TRiSM使企业能够管理其AI系统的法律、道德和运营绩效。这种技术解决方案能够创建、管理和执行负责任的AI使用策略、解释AI系统的工作原理并提供透明度以建立信任和问责制。
Gartner预测,到2028年,采用综合AI治理平台的企业将比没有这类系统的企业减少40%与AI相关的伦理事件。
虚假信息安全(Disinformation Security)
虚假信息安全是一个新兴技术类别。该技术能够系统地辨别信任度,旨在提供一个能够确保信息完整性、评估真实性、防止冒名顶替和追踪有害信息传播的方法体系。Gartner预测,到2028年,将有50%的企业开始采用专为应对虚假信息安全用例而设计的产品、服务或功能,而目前这一比例还不到 5%。
AI和机器学习工具的广泛可用性和高级状态被用于恶意目的,预计将增加针对企业的虚假信息事件数量。如果这种趋势不被加以控制,那么虚假信息可能会对企业造成重大且持久的损害。
后量子密码学(Postquantum Cryptography)
后量子密码学能够保护数据免受量子计算解密风险。根据量子计算过去几年的发展情况,目前广泛使用的几种传统加密技术将被淘汰。由于改变加密方法并非易事,企业必须有更长的准备时间,才能为一切敏感或机密信息提供强有力的保护。
Gartner预测,到2029年,量子计算技术的进步将使大多数传统的非对称加密技术变得不安全。
环境隐形智能(Ambient Invisible Intelligence)
环境隐形智能是由成本极低、体积小巧的智能标签和传感器实现的,这些传感器能够提供大规模、经济实惠的的追踪和传感。长远来看,环境隐形智能将使传感器和智能技术无缝融入我们的日常生活中。
到2027年,环境隐形智能的早期示例将以解决当前问题为主,例如零售库存检查或易腐货物物流等,通过实现低成本的实时物品追踪和感知来提高可见性和效率。
节能计算(Energy-Efficient Computing)
IT以多种方式影响可持续性。在2024年,碳足迹是大多数IT组织的首要考虑因素。计算密集型应用,例如AI训练、模拟、优化和媒体渲染等由于能耗最高而可能成为企业碳足迹“大户”。
预计从2020年代末开始将出现一些新的计算技术,如光学、神经形态和新型加速器等。这些新技术将被专门用于特殊任务,例如AI和优化,并显著降低能耗。
混合计算(Hybrid Computing)
新的计算范式正在不断涌现,包括中央处理单元、图形处理单元、边缘、特定应用集成电路、神经形态以及经典量子计算、光学计算范式。混合计算结合不同的计算、存储和网络机制解决计算问题。这种计算形式能够帮助企业探索和解决问题,使AI等技术能够突破当前的技术限制。混合计算将被用来创建比传统环境更高效的变革性创新环境。
空间计算(Spatial Computing)
空间计算利用增强现实和虚拟现实等技术,以数字方式增强物理世界。它将实体和虚拟体验之间的交互提升到一个新的级别。在未来五到七年内,空间计算的使用将通过简化工作流程和增强协作能力来提高企业效率。
Gartner 预测,到2033年,空间计算市场将从2023年的1100亿美元增长至1.7万亿美元。
多功能机器人(Polyfunctional Robots)
多功能机器人能够执行多项任务,它们正在取代为重复执行一种任务而专门设计的特定任务机器人。这种新型机器人的功能性能够提高效率和投资回报率(ROI)。多功能机器人可以与人类一起协作,能够快速部署和轻松扩展。
Gartner预测,到2030年,80%的人类将每天与智能机器人打交道,而目前这一比例还不到10%。
神经增强(Neurological Enhancement)
神经增强利用读取和解码大脑活动的技术提高人类的认知能力。这项技术能够使用单向脑机接口或双向脑机接口(BBMI)读取人的大脑,在人类技能提升、下一代营销和提升表现这三个主要领域具有巨大潜力。神经增强将提高人类的认知能力,帮助品牌了解消费者的想法和感受并增强人类的神经功能,从而获得最佳的结果。
Gartner预测,到2030年, 30%的知识工作者将通过BBMI等技术(资金来源包括雇主和个人)提升自己的能力,并凭借这些技术来适应工作场所中AI的崛起。这一比例在2024年还不到 1%。
2.福布斯《2025年十大人工智能趋势:每个人都必须做好准备》
增强工作 / Augmented Working
今年,几乎所有主流软件工具都在匆忙整合生成式人工智能功能。到2025年,人们将更加认真地考虑如何让人类与人工智能携手合作,真正地增强技术能力,同时腾出时间将我们的创造力和人际交往技能应用于机器仍无法处理的工作,而不是简单地将聊天机器人添加到所有领域。
实时自动决策 / Real-Time Automated Decision-Making
拥有更成熟人工智能战略的企业,将转向实现整个业务流程的端到端自动化。这可能发生在物流、客户支持和营销领域,算法将做出决策,例如如何管理库存或如何在最少的人为干预下响应客户查询。
负责任的人工智能 / Responsible AI
2025年,以合乎道德、安全、透明、可靠和尊重知识产权的方式开发和部署人工智能将越来越重要。除了通过立法推动,人们也越来越意识到不负责任地使用人工智能可能造成的危害。
视频生成 / Generative Video
只要输入电影大纲(或者视频的短片段),就能看到一个长视频活灵活现地呈现在眼前。OpenAI今年用其Sora模型进行了概念验证,2025年可能是它开始投入使用的一年。
下一代语音助手 / Next-Gen Voice Assistants
人工智能语音助手(例如Siri或Alexa)虽然已经存在多年,但它们的对话能力还相当有限。今年,ChatGPT展示了一种新的“可中断”高级语音模式,能够模拟人类的对话。谷歌已经开始将其Gemini聊天机器人集成到移动设备中,取代现已过时的“Hey Google”功能。到2025年,这些功能将出现在越来越多的设备中。
人工智能立法与监管 / AI Legislation And Regulation
各国政府一直在努力应对监管人工智能的挑战。包括通过法律限制其造成危害的可能性。到2025年更多法规将出台,重点关注减轻歧视和虚假信息的可能性。
自主式AI智能体 / Autonomous AI Agents
目前大多数人工智能工具都是基于执行简单任务的基础而工作的,例如生成文本或解释数据以进行预测。AI智能体是一种无需精确指令就能运行的工具,它可以将众多任务串联起来,并根据实现的结果调整其行为。
探索后真相世界 / Navigating A Post-Truth World
2025年,应对人工智能催生的大量虚假内容和虚假新闻将成为整个社会面临的重大挑战。作者预测整个社会将开始适应“后真相”时代的挑战,政府将通过立法、教育等方式来推动变革。
量子人工智能 / Quantum AI
量子计算虽然仍处于起步阶段,但它可能会彻底改变人工智能。利用亚原子水平上的材料表现出的奇特性,以前所未有的速度执行某些计算任务。让算法能够以亿倍于标准计算机的速度运行,不仅仅会让人工智能变得更快,它还可能完成全新的任务,在从疫苗和医药研发到新材料和新能源的生产等领域开辟新的可能性。
网络安全和防御领域的人工智能 / AI In Cybersecurity And Defense
2025年,网络攻击将继续变得越来越频繁和复杂。这意味着,人工智能系统在网络安全威胁造成严重破坏之前发现潜在漏洞、异常情况,以及让网络安全系统自动化等方面将变得更加重要。不过,这并不全是关于看不见的、位于幕后的算法。随着越来越多的威胁以网络钓鱼和社会工程攻击的形式出现,聊天机器人能通过模拟网络钓鱼教会我们如何发现威胁和避免成为受害者。
可持续的人工智能 / Sustainable AI
可持续人工智能包含两个因素。首先,人们越来越清楚地认识到,基于云的人工智能系统需要耗费巨大能源,数据中心将转向可持续和可再生能源。其次,旨在提高可持续性、减少其他行业环境足迹的人工智能应用潜力巨大。利用算法尽量减少农业用水和杀虫剂的使用,更有效地引导交通出行以及减少汽车排放造成的污染,人工智能将继续成为保护环境的有力工具。
3. IDC FutureScapes:IDC 发布 2025 年全球 IT 行业十大预测
AI 经济学
在未来的一年里,首席信息官们将专注于记录 AI 的整体使用程度,从 AI 实验转向货币化。要克服所有企业的 IT 现代化障碍,必须为自动测量和优化支持 AI 的应用程序奠定坚实的基础。
AI 转型障碍
有几个因素可能会阻碍 GenAI 实施的成功率,主要限制因素包括开发人员短缺、高成本、基础设施性能不足和 IT/业务线协调不佳。IDC 预测,如果针对这些障碍的解决方案与业务战略不一致,多达 30% 的组织将重新考虑其 GenAI 投资。
网络韧性
高可见性勒索软件中断继续使网络恢复和网络弹性成为许多企业 IT 团队的首要议程项目。组织无法适应不断变化的威胁以及 AI 的广泛使用将阻碍其满足受 AI 影响的业务成果预期的能力。
云现代化
成功实现云架构现代化的组织将受益于更高的投资回报率、更具成本效益、运营效率和可持续的 IT 成果,以及更好的工作负载和应用程序性能。
数据即产品
数据即产品架构将导致大型企业的数据孤岛显著崩溃和效率低下。数据即产品方法是一种生成和使用数据的方式,它使流程可重复,并使数据支持的结果更加一致和可靠。
应用程序变革
从 2022 年的 GenAI 热潮中崛起的副驾驶正在迅速让位于 AI 代理——全自动软件组件,它们能够使用知识和技能来评估情况并采取行动,限制或没有人工干预。
推理交付
随着组织继续加速采用 GenAI 和代理工作流,推理工作负载将急剧增加。展望未来,当务之急是不要被锁定在单个推理选项中,而是要制定“多重推理”操作策略。
AI 基础设施脱碳
电子垃圾的潜在增长反映了所有企业对 AI 投资的快速增加。为了应对利用 AI 优势的环境挑战,企业正在转向可持续 AI 框架,这些框架专注于通过解决能源效率、资源优化和减少电子垃圾等关键要素来最大限度地减少人工智能对环境的影响。
复合 AI 的统一平台
企业很快就会了解到,专注于基本生产力 AI 和 GenAI 用例将对业务产生有限的影响。当技术基础和工作流程到位,以在整个组织内扩展解决方案时,AI 就会取得成功 ,从而创建一个全面、协调的平台,以确保整个组织投资的规模经济。
新的工作角色
自动化的需求将创造人工智能驱动的工作场所转型,从而改变就业旅程的生命周期。当被问及是否准备好满足数字工作转型要求时,共有 47% 的 IT 和 LOB 领导者表示,他们已经做好了充分的准备,并已改变工作实践和政策,利用技术来支持当前和未来的业务需求。
4. Sequoia Capital(红杉资本) :AI in 2025: Building Blocks Firmly in Place
-
AI生态系统走向成熟:文章指出,AI生态系统已从早期的混沌阶段走出,基础设施和关键能力已初步成型,正迈向全面落地的新时代。
-
芯片地位凸显:随着AI技术的迅猛发展,芯片作为其核心硬件支撑,在AI生态系统中扮演着越来越重要的角色。
-
创业者与投资者的焦点:2025年将成为“淘金之年”,创业者、投资者以及企业开始筛选并打磨最有前景的AI应用,大型语言模型、AI搜索以及投资回报率将成为焦点领域。
-
大型语言模型的竞赛:以GPT-3发明者Dario Amodei为核心的Anthropic、xAI等公司在大型语言模型领域展开激烈竞争,不断推动技术边界。
-
AI搜索的崛起:AI搜索基于LLM技术,能够语义理解和生成信息,对于白领工作者来说,代表了生产力的巨大飞跃。未来可能分化为消费级与企业级两大阵营。
-
科技巨头的投入:科技巨头在AI领域的投入规模空前,自ChatGPT推出以来,资本开支几乎翻倍。它们不仅主导着大部分数据中心,还持有大模型公司的重要股份,并投资了大量AI初创企业。
-
算力价格下降:随着AI基础设施的过度建设,AI计算价格将继续大幅下降,这对初创企业极为有利,因为它们更多是算力的消费者而非生产者。
-
商业闭环的挑战:尽管AI技术在各个行业展现出巨大潜力,但构建和训练这些模型需要巨额的资本支出,而相应的收入产出却并不明朗,如何完成变现的商业闭环仍是行业面临的关键挑战。
-
Service-as-a-Software的趋势:未来,AI应用将按成果收费,而不是像传统的SaaS那样按座位收费。这种定价策略的变化背后是商业模式的根本转变,即软件公司将人力劳务转化为软件服务。
-
应用层的巨大空间:虽然AI基础设施和模型层已经被巨头占据,但应用层还有巨大的空白空间等待创业者去开拓。
5. 德勤《Tech Trends 2025》
-
趋势一:空间计算—连接数字与物理的新革命
空间计算通过打破信息孤岛,提供更自然的人机交互方式,正在重塑从医疗到娱乐的各个行业。
- 趋势二:AI的下一个时代:从知识到执行的跃迁
人工智能的下一个阶段正在到来,而企业的关注点已从大型语言模型(LLMs)的广泛应用,转向更精细、更专业化的小型模型(SLMs)和代理型AI,推动企业效率与创新。
-
趋势三:硬件的崛起:从幕后支撑到引领AI革命
随着AI对计算资源的需求激增,专用硬件(如AI芯片)成为驱动AI革命的关键。在未来18到24个月内,混合计算模式将成为常态,硬件与云端的结合将决定企业在AI时代的竞争力。硬件不再只是支撑技术发展的“幕后功臣”,它正走向舞台中央,成为技术与商业变革的核心力量。
-
趋势四:IT的角色重塑:从数字转型灯塔到AI时代引领者
AI在编程、测试和技术支持中的应用显著增强了IT团队的能力,重新定义了技术部门的作用。未来的IT模式将更加精益且融合,与业务功能的协作更加紧密。技术领导者不再只是支持角色,而是战略制定者,直接与CEO对接,共同推动AI价值的实现。
-
趋势五:量子计算:重塑网络安全的关键窗口
面对量子计算机对现有加密技术的威胁,企业需尽快采取后量子加密解决方案。
-
趋势六:智能核心:AI正在重塑核心现代化
AI深入企业核心系统,提升智能化与预测能力,同时增加了架构复杂性和对技术技能的需求。
6. 易观分析《2025年AI产业发展十大趋势》
通用人工智能(AGI)之路虽充满挑战,但技术进阶从未停歇,从2024年开端,向2025年延续,人工智能的发展,将由模型开发与竞赛,转向产品为先与场景打磨的新阶段,加速AI产业落地。多元应用场景雏形初现,科技大厂占据AI应用第一梯队,夸克、剪映、豆包领跑。
AGI道阻且长,技术能力持续提升,加速产业落地
-
趋势1:self-play RL范式开启,大摸型技术军备赛进入复杂推理阶段
-
趋势2:多模态模型能力持续升级,朝向多模态理解和生成的统一发展
-
趋势3:Agent向超级智能体进化,具备更强的学习和推理能力,处理更复杂的任务
应用场景多元化探索,初现雏形
-
趋势4:AI原生应用形成服务闭环,聚焦专业用户提升效率是中短期重要方向
-
趋势5:现存应用加速拥抱AI,利用LLM能力提升产品竞争力,不加AI就淘汰
-
趋势6:AIGC赋能IP全生态,延长优质IP生命周期,提升商业价值贡献
-
趋势7:硬件全面AI化,教育与办公、生活的应用场景闭环率先实现落地
企业拥抱AI持续加速,理性思考投入产出比
-
趋势8:AI赋能千行百业,行业大模型催生“智能链主”
-
趋势9:AI技术能力普惠之下,利用企业专有数据形成深度洞察与策略是企业未来经营差异化的重要关键
-
趋势10:AI应用的深化将对企业的组织能力提出新的要求,企业需要打造适用于人机协同的组织管理体系
7. 量子位《2024年度AI十大趋势报告》
技术篇
-
趋势一:大模型创新:架构优化加速涌现,融合迭代大势所趋
-
趋势二:Scaling Law泛化:推理能力成皇冠明珠,倒逼计算和数据变革
-
趋势三:AGI探索:视频生成点燃世界模型,空间智能统一虚拟和现实
产品篇
-
趋势四:AI应用格局:第一轮洗牌结束,聚焦20赛道5大场景
-
趋势五:AI应用竞争:多领域竞速运营大于技术,AI助手兵家必争
-
趋势六:AI应用增长:AI+X赋能类产品大干快上,原生AI爆款难求
-
趋势七:AI产品趋势:多模态上马,Agent席卷一切,高度个性化呼之欲出
行业篇
-
趋势八:AI智变千行百业:左手变革生产力,右手重塑行业生态
-
趋势九:AI行业渗透率:数据基础决定初速度,用戶需求成为加速度
-
趋势十:AI创投:投融资马太效应明显,国家队出手频率提升
说在最后
2025年,人工智能迈入深度应用和技术成熟的新阶段。以生成式AI、代理型AI、多模态模型为代表的技术,正从实验室走向实际应用,驱动产业变革与效率提升。AI技术不再仅仅是工具,而是行业创新、决策支持与生产力提升的核心引擎。科技大厂与创业者将在应用场景中竞相探索,以构建从技术到产品的完整闭环。
尽管机遇与挑战并存,但我们需要以开放和负责任的态度拥抱AI技术。唯有深刻理解趋势、积极创新,企业才能在AI浪潮中占据主动,成为引领未来的重要力量。
更多AI小知识欢迎关注“神州数码云基地”公众号,回复“2025AI趋势”获取集锦