吴恩达机器学习总结:第二课 多变量线性回归(大纲摘要及课后作业)

这篇博客是吴恩达机器学习课程的多变量线性回归总结,包括符号设定、梯度下降法、特征缩放、学习率的选择、特征多项式回归以及正规方程的探讨。作者强调了在实际操作中如何处理特征缩放,选择合适的学习率,并对比了梯度下降与正规方程在大规模数据时的适用性。此外,还给出了课后作业,涉及数据处理、梯度下降预测及正规方程应用。
摘要由CSDN通过智能技术生成

为了更好的学习,充分复习自己学习的知识,总结课内重要知识点,每次完成作业后

都会更博。

英文非官方笔记

1.总结

    (1)符号设置:

       n 特征的数量

        m  样本数量

        Xi  样本i的向量型输入

        Xj 样本i的第j个特征

       hθ(x) = θ0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值