目录
Part.0 前言
当你在短视频平台刷到“猜你喜欢”时,算法正在用协同过滤算法捕捉你的兴趣轨迹;当你在电商平台被“相关推荐”击中痛点时,深度学习模型已通过Embedding(嵌入式)技术将商品与你的偏好精准匹配;当你在社交网络被“可能认识的人”吸引时,图神经网络(GCN)正通过社交图谱挖掘你的隐性关系。这些看似“无感”的体验背后,是推荐系统与大模型技术对用户行为的深度解构与价值重构。
从谷歌新闻推荐算法的兴衰,到Tinder婚恋匹配的精准博弈,再到阿里巴巴“双11”千人千面的流量战场,算法早已成为互联网巨头的“核武器”。企业通过推荐系统实现用户时长增长、转化率提升的案例屡见不鲜,而大模型更是以“多模态生成”“思维链推理”等能力,将推荐系统的边界从“内容分发”拓展至“意图理解”与“决策辅助”。对于技术从业者而言,这不仅是算法的迭代,更是一场关于“如何用代码重构商业价值、重塑商业世界底层逻辑”的认知革命。
在信息过载的时代,算法就像我们的“数字分身”,替我们筛选新闻、推荐商品、匹配社交关系,甚至影响我们的消费决策与价值观。你是否曾因推荐算法的“信息茧房”而陷入认知偏见?是否曾因“猜你喜欢”的精准推荐而冲动消费?又是否曾被AI客服的“伪智能”对话气到抓狂?这些现象背后,是推荐系统与大模型技术的双刃剑效应。一方面,算法让我们以更低的成本获取信息、享受服务;另一方面,算法偏见、隐私泄露、伦理争议等问题也如影随形。而随着AI原生应用的爆发,从ChatGPT的“思维链提示”到Midjourney的“生成可控性提示”,用户与机器的交互方式正在被彻底改写——我们不再是被动的信息接收者,而是需要学会“与算法对话”的“数字公民”。
那么,如何在这场算法主导的数字革命中,既不被技术异化,又能驾驭其力量?答案或许就藏在以下6本书中:它们将带你从推荐系统的技术原理出发,洞悉算法的底层逻辑;从大模型的训练优化入手,理解AI能力的边界;从提示工程的实战技巧中,掌握与算法对话的“语言密码”。无论你是技术从业者、普通用户还是创业者,这6本书都将成为你破译算法时代生存法则的“密钥”,助你在数字洪流中保持清醒,在技术浪潮中抢占先机。
Part.1 产品思维与算法创新的融合之道
▼点击下方,即可购书
传送门:https://item.jd.com/14105659.html
短视频平台用“猜你喜欢”让你沉迷刷屏,电商平台用“相关推荐”让你忍不住剁手,这些现象背后是推荐系统对人性弱点的精准拿捏。本书以媒介变迁为脉络,从新闻推荐到社交网络,从视频平台到电商货架,系统剖析了推荐产品的创新逻辑。书中以阿里、谷歌等巨头的实战案例为蓝本,揭示了如何通过“协同过滤”“基于内容的推荐”等算法,在用户兴趣与商业目标之间找到微妙平衡。更难得的是,作者提出“媒介创新比内容更重要”的洞见,为产品经理和算法工程师提供了跨维度的思考框架。
全书内容分为5部分。第一部分从宏观视角探讨推荐产品从0到1进行创新的产品思路和技术思路;第二部分介绍革新传统纸质媒介的新闻推荐和资讯推荐,包括关键算法设计和产品设计;第三部分介绍构建线上社交网络的社交和社区推荐,以及如何通过协同过滤算法模拟社交网络;第四部分从产品、生态和算法设计的角度,介绍革新传统影视行业的视频推荐;第五部分以阿里推荐产品及其新兴的竞争产品为例,介绍革新传统货架电商的商品推荐。
Part.2 算法工程师的实战兵法
▼点击下方,即可购书
传送门:https://item.jd.com/14215365.html
面对海量用户行为数据,如何让推荐系统真正“懂你”?本书从矩阵分解、深度学习到混合推荐算法,构建了一套完整的个性化推荐方法论。书中不仅解析了雅虎新闻推荐、谷歌资讯推荐的兴衰史,更以Facebook社交推荐、Tinder婚恋匹配等场景为例,展示了算法如何重塑用户关系。对于工程师而言,这既是一本“避坑指南”——如何应对数据稀疏性、冷启动等难题;也是一本“进阶秘籍”——如何通过Embedding技术、强化学习来优化推荐效果。
本书提出了3 种新的算法,分别是基于三维项集矩阵和向量的频繁项集挖掘算法、融合惩罚因子和时间权重的协同过滤算法以及基于用户属性和项目评分的协同过滤算法,并介绍了一个个性化图书推荐原型系统的构建方案。
Part.3 大厂算法工程师的“内功心法”
▼点击下方,即可购书
传送门:https://item.jd.com/14330538.html
在推荐系统的“战场”上,大厂如何用算法实现“降维打击”?本书作者以10年互联网算法经验,首次揭秘了谷歌、阿里巴巴等巨头的推荐系统架构。从召回、粗排、精排到重排的四层漏斗模型,到双塔模型、GCN图卷积网络等前沿技术,书中详细拆解了每个环节的算法设计与工程优化。例如,双塔模型通过用户与物品Embedding的“双塔结构”,在毫秒级响应中实现精准推荐;而GCN则通过图神经网络挖掘用户社交关系,让推荐更具“人情味”。对于求职者而言,这更是一本“面试宝典”——从特征工程到模型评估,从多任务学习到多场景迁移,覆盖算法工程师职业生涯的全链路。
全书总计10章,内容涵盖了推荐系统的基础知识、推荐系统中的特征工程、推荐系统中的Embedding、推荐系统的各组成模块(包括召回、粗排、精排与重排)所使用的算法技术、推荐算法实践中经常会遇到的难题以及应对之道(其中涉及多任务推荐、多场景推荐、新用户冷启动、新物料冷启动、评估模型效果、定位并解决问题等),最后还用一章的篇幅介绍了推荐算法工程师在工作、学习、面试时应该采取的做法。
Part.4 从理论到落地的“全栈指南”
▼点击下方,即可购书
传送门:https://item.jd.com/14048272.html
推荐系统并非简单的“算法堆砌”,而是工程与算法的深度融合。本书从LR逻辑回归、MLP多层感知机等基础模型出发,逐步深入Wide & Deep、DIN等深度学习模型,构建了一套完整的推荐系统技术栈。更值得关注的是,书中提出了“公平性”“知识蒸馏”等前沿议题,探讨了如何避免算法偏见、提升模型可解释性。例如,通过“知识蒸馏”技术,可以将大模型的泛化能力迁移到轻量级模型中,在降低计算成本的同时保持良好的推荐效果。
本书系统介绍推荐系统的技术理论和实践。从推荐系统的基础知识到推荐系统常用的机器学习和深度学习模型;紧接着重点介绍推荐系统的4层级联架构,包括召回、粗排、精排和重排,以及谷歌、阿里巴巴等大型互联网公司在4层级联架构中的模型设计和实现原理;然后介绍多目标排序在推荐系统中的应用,阿里巴巴、谷歌等大型互联网公司的实践;最后从不同角度审视推荐系统,介绍公平性问题、知识蒸馏、冷启动等各种前沿实践。
本书基于一线研发人员的视角向读者分享推荐系统的实践经验,所有模型结构和前沿实践都在业务场景中落地。
Part.5 大模型时代的“技术圣经”
▼点击下方,即可购书
传送门:https://item.jd.com/14893696.html
当GPT-4、GLM等千亿参数大模型横空出世,推荐系统正迎来新一轮范式革命。本书从Transformer架构出发,系统解析了大模型的训练优化(如混合精度训练、并行训练)、推理优化(如模型量化、剪枝)等核心技术。更令人兴奋的是,书中提出了“大模型+推荐系统”的融合方案,例如,通过大模型生成高质量的物品描述,提升基于内容的推荐效果;或利用大模型理解用户查询意图,优化搜索推荐体验。对于希望站在技术前沿的从业者,这无疑是一本“破局之作”。
本书从技术角度深度解析大模型的原理,从大模型的基础概念及领域发展现状入手,概述大模型的理论基础,介绍OpenAI GPT、清华大学GLM、Meta Llama等主流大模型的技术原理,并从大模型参数高效微调、大模型指令微调、大模型训练优化和大模型推理优化等多角度解析大模型背后的技术,带领读者全方位掌握大模型的原理和实践方法。
本书最后介绍私有大模型的构建,手把手指导读者做技术选型,并搭建自己的私有大模型。
Part.6 大模型时代的“交互革命”
▼点击下方,即可购书
传送门:https://item.jd.com/14373635.html
在AI原生应用中,提示工程(Prompt Engineering)已成为决定模型输出的“终极密码”。本书从结构化提示设计、NLP任务提示到生成可控性提示,构建了一套完整的提示工程方法论。
例如,通过“思维链提示”,可以引导大模型像人类一样逐步推理;而“形式语言风格提示”则能让模型输出更符合特定场景的表达。对于希望开发AI助手、智能客服等应用的开发者,这更是一本“操作手册”——从提示调试技巧到安全设计,手把手教你打造“更懂用户”的AI原生应用。本书结合AI原生应用落地的大量实践,系统讲解提示工程的核心原理、相关案例分析和实战应用,涵盖提示工程概述、结构化提示设计、NLP任务提示、内容创作提示、生成可控性提示、安全设计提示、形式语言风格提示、推理提示和智能体提示等内容,帮助读者深入理解和应用提示设计技巧,找到决定大语言模型输出的关键因子,进而将提示工程的理论知识应用到产品设计中。
Part.7 彩蛋:赠书!
接下来给大家推荐一本关于机器学习领域的经典书籍:《基于机器学习的个性化推荐算法及应用》。这是一本系统讲解如何运用机器学习技术构建个性化推荐系统的专业书籍,内容涵盖了从基础理论到实际应用的全过程,是数据科学家、机器学习工程师以及相关专业学生的实用指南。本书详细介绍了机器学习的基本原理、常见推荐算法(如协同过滤、基于内容的推荐、深度学习推荐模型等)的实现与优化,以及如何将这些算法应用于实际的推荐系统中,助力读者在个性化推荐领域深入探索与实践!另外,关注本文博主,点赞+收藏本文,且在本文评论区评论“入手个性化推荐算法”,将选取三名幸运读者送出纸质版《基于机器学习的个性化推荐算法及应用》一本,截止时间:2025.05.27。传送门:https://item.jd.com/14215365.html。个人觉得这本书非常不错,是一本不可多得的好书,值得拥有并深入学习!
Part.8 结束语
算法如同无形的织网,将我们的注意力、消费行为与社交关系编织成精密的数据图谱。它既是效率的放大器,让信息与服务触手可及;亦是偏见的放大镜,将认知局限与隐私风险无限放大。但历史早已证明,技术从来不是宿命的囚笼,而是人类智慧的延伸——从蒸汽机到互联网,每一次技术革命都伴随着质疑与重构,而最终推动社会进步的,永远是那些敢于直面技术本质、驾驭技术力量的人。这6本书是算法时代的一套“认知工具箱”:它们将带你穿透推荐系统的技术迷雾,拆解大模型的训练逻辑,解锁提示工程的交互密码。当我们学会用批判性思维审视算法推荐,用工程思维设计算法规则,用创造性思维与算法对话时,便从算法的“被动接受者”升级为“主动造浪者”——既能借助算法的浪潮抵达认知的彼岸,也能在必要时扬起理性的风帆,抵御技术异化的暗流。未来的数字世界,注定是算法与人性博弈的战场。愿你以这6本书为舟,以算法素养为桨,在信息洪流中明辨经纬,在技术浪潮里恪守本心,从容驶向数字时代的智慧彼岸。真正的数字公民,从不是技术的奴隶,而是技术与人性共舞的“平衡艺术家”。