初中数学

本文详细介绍了初中数学的各种概念,包括三角形的性质、全等三角形的判定、轴对称图形、整式乘法与因式分解、分式、二次根式、函数、数据统计分析、一元二次方程、二次函数等。内容涵盖几何、代数、平面直角坐标系等多个领域,是学习初中数学的重要参考资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

初中数学

三角形

不在同一条直线上的三条线段首尾依次相连叫做三角形
三边关系,三角形的两边和大于第三边,三角形两边差小于第三边
高:从一个顶点向所对的边画垂线,垂线的长度叫做高 垂心
中线:连接三角形的一个顶点和所对的边的中点连接的线 重心
角平分线:角的平分线和对边相交的长度 内心
三角形具有稳定性


三角形内角和180° 证明方法将三角形放在两条平行线中,然后由平行线的性质来证明
外角,就是三角形一条边与另外一条边的延长线的组成的叫外角
外角等于与其不相邻的角的和


多边形,线段首尾相连的封闭图形,按条数分成三边形四边形五边形… 多边形相邻两边组成的角叫内角
多边形的外角就是其中一条边和另外一条边的延长线组成的角叫做外角
对角线公式:n(n-3)/2
内角和公式:(n-2)*180
多边形的外角和等于360

全等三角形

全等形是表示一种关系,表示两种图形形状大小相同的图形,放在一起可以重合的图形
全等三角形就是说两个三角形完全重合
重合的角边点,对应角,对应边,对应顶点
≌符号表示全等于
确定对应边对应角时,要注意:
1.最长边 公共边 最短边全部是对应边
2.最大角 公共角 最小角 对应角全部是对应角
3.角对应,所夹的边也是对应的;边对应,所夹的角也是对应的
4.两条对应边夹角是对应角,两个对应角所夹的边也是对应边

判定方法:
1.SSS,就是指两个三角形的三边都相等,则两个三角形≌
2.SAS,两边和它们的夹角相等,则两个三角形≌
3.ASA,两角和他们的夹边(两个角的公共边)分别相等,则两个三角形≌
4.AAS,两个角相等,其中一条边相等,则两个三角形≌
5.HL,斜边和一条直角边分别相等,则两个三角形≌
SSS运用到角平分线的应用
角平分线的上的点到角的两边距离相等

轴对称

一个图形沿着一条直线折叠,直线两旁的部分能互相重叠,这个图形就是轴对称的图形

垂直平分线:经过线段的中点并且垂直于这条线段的直线
垂直平分线的性质
1.垂直平分线上的点到两个端点的距离相等
2.在线段两个端点距离相等的点在这条线段的垂直平分线上

关于平面直角坐标系上点的关于x/y的对称轴的坐标,可以根据手推找出,不再赘述
对于轴对称图形,只要找到一组对应点,作出链接线段的垂直平分线就可以找到对称轴;同样,对于轴对称图形,对称轴就是任意一点的垂直平分线
等腰三角形性质
1.等腰三角形两个底角相等,这个性质必须在同一个等腰三角形中
2.等腰三角形的平分线,中线,高重合,并且是它的对称轴


等边三角形的性质
1.等边三角形的三个内角相等,为60°
2.等边三角形的三条对称轴交与一个点中点
3.它具有等腰三角新的一切性质


30°角的性质
1.有一个角是30°,那么它所对的直角边是斜边的一半

整式的乘法与因式分解

1.an+am=an+m
2.(an)m=anm
3.(ab)n=anbn
4.单项式与单项式相乘;系数相乘,同底数幂相乘
5.单项式与多项式相乘;用单项式去乘多项式每一项,最后相加
6.多项式与多项式相乘;用多项式的每一项去乘另外一个多项式的每一项,最后相加,也就是先把第一个多项式堪称一个整体然后再拆开
7.am/an=am-n
8.a0=1
9.单项式/单项式;系数相除,同底数幂相除
10.多项式/单项式;用多项式每一项/单项式的每一项,得到的商进行相加
11.平方差公式;(a+b)(a-b)=a2-b2,运用这个公式的时候需要找准a和b,看准正数负数,不要把被减数减数弄混
12.完全平方公式;(a±b)=a2±2ab+b2也就是说,两个数的和的平方等于他们的平方和加上他们的积的2倍


因式分解,把一个多项式或称几个整式的积的形式,也叫做分解因式,因式分解(左和右积)乘法运算(左积右和)
所以,因式分解和整式的乘法有很大的联系
1.提取公因式法,首先把相同字母提出来取最低次幂,然后括号里为每一项提出来公共的剩下的那些东西的进行相加
2.公式法,按照平方差公式或者完全平方公式进行分解
因式分解,先考虑提,在考虑公式法,在转换平方的时候需要一步一步脱;不能跳步,不能着急去括号
如果两种方法都不行并且项数非常多,那么我们可以分组来考虑,在脑子里要经常想这些个公式
3.十字相乘,只能运用在二次三项中,然后看最后常数项拆分两个数的积,这些对数中满足第二项的系数,就比如x²+(p+q)x+pq=(x+p)(x+q)

分式

我们在小学的时候就学过分数乘以分数,其实分式就是这玩意,分式只不过把分子分母变成字母,表示成A/B(分数)的形式,分式的分母≠0才有意义,分式也满足分数的性质
根据分式的性质,把分式分子分母的公因式约去,叫做约分,约分之后叫做最简分式其实就和因式分解的提公因式法类似
根据分式的性质,把几个异分母的分式化成与原来分式相等的分式叫做通分,还是和因式分解提公因式法类似
分式乘分式,分子的积作为积的分子,分母的积作为积的分母,
分式除以分式,把分式的分子分母颠倒后再相乘
分式方程,其实和一元一次方程的去分母差不多,需要乘上最简公分母
如果把分式的解代入最简公分母,如果最简公分母不为0,否则这个解不是原分式方程的解

二次根式

首先理解平方根,平方根有两种,被开方的数不能为负数
形如sqrt(a)的式子,叫做二次根式
1.表示a的算术平方根
2.a可以是数,也可以是式
3.形式上含有二次根号
4.a≥0 sqrt(a)≥0双重非负性
5.既可以表示开方运算,也可以表示结果
在根号下的式子中,如果没有条件下,就不是一个二次根式,因为我们无法确定数据范围
被开方数不能为负数,分母不能为0
我们把数和数的字母连接起来的式子叫做代数式
sqrt(a2)=|a|,在这里a就可以是一个负数


在二次根式的乘除中,有公式:sqrt(a)sqrt(b)=sqrt(ab) sqrrt(a)/sqrt(b)=sqrt(a/b)可以逆向运用,正确运用公式
在做二次根式的运算的时候,需要最后的结果是最简二次根式
化最简公共因式的时候
最简二次根式的条件:
1.被开方数中的因数是整数,因式是整不可以是分式
2.被开方数中不能含开的尽的因数或因式
3.分母不含根号
在二次根式的加减的运算的时候,首先我们要把两个数化作最简二次根式,然后将被开方数相同的二次根式进行合并;如果不是同类二次根式,不能再进行合并了,就已经求出来结果了

勾股定理

勾股定理体现直角三角形的性质,直角三角形象征人类的文明,又叫做毕达哥拉斯定理
直角三角形的两个锐角互余,30°角的性质
勾股定理,在直角三角形中,两个直角边的平方和等于斜边的平方a2+b2=c2
勾股定理的逆定理,如果一个三角形满足a2+b2=c2那么他是一个直角三角形
其实再数学中我们经常会遇见这些反正都一样的,一个图形有什么什么性质,具有这个性质的就是这个图形

平行四边形

平行四边形在小学中就已经见过了,如何画平行四边形这里就不再赘述
平行四边形的性质;对边平行且相等的、平行四边形的对角相等、平行四边形的对角线互相平行
平行四边形的判定;其实和性质一样 ,没有什么可以叙述的
连接三角形两边中点的线段叫做 三角形的中位线,中位线平行于三角形的第三边并且等于它的一半
矩形;有一个角是直角的平行四边形叫做矩形,两组对边平行且相等,四个角都是直角,两组对角线 互相平方且相等,矩形既是中心又是轴对称
菱形;有一组邻边相等的平行四边形;菱形四条边平行相等;对角相等,邻角互补;对角线互相平分并且相等S=底×高 对角线×对角线/2
正方形;

函数

在生活中,类似于xy的关系式很多
形如y=kx+b(k≠0)就叫做一次函数,如果b为0,叫做正比例函数,函数里面必须有x和y
函数的图像,一开始我们取值的时候通常取比较简单的数,然后找出不同x取的y值然后连成线,就能画出来,形状是直线
k>0往上升 k<0直线是下降趋势
找函数的表达式的时候需要找准x和y然后代入函数的式子
xy的取值关系到坐标的位置,所以解的时候注意坐标系的性质以及不同值的位置

数据统计分析

首先先理解五个概念
平均数,如果有n个数x1 x2 x3 x4 x5那么平均数就为(x1+x2+x3+x4+x5)/n,又叫做n拔
加权平均数,权就是指n个数中出现的次数
极差,这个概念在初一就见过,表示最大值减最小值;表示一组数据的变化范围反应数据的波动情况
方差,与平均数做差,然后求平方,然后求平均数,有些麻烦,通常用s2表示
众数,在一组数中,出现次数最多的数

一元二次方程

两边都是整式的方程,只含有一个未知数,并且未知数的最高次数为2,叫做二元一次方程,
形式:1.ax2+bx+c=0 2.ax2+bx=0 3.ax2+c=0 4.ax2=0
一元二次方程的解叫做,一个一元二次方程的根满足左右两边的等式
化简后的一元二次方程二次项系数不能为0,这个是判断一元二次方程的关键
一元二次方程需要找准abc的值,带有含参的类型的,不过是abc的形式变了
求解一元二次方程
1.直接开平方法;通过移项的方法可以直接开平方求解
2.配方法;二次项系数必须为1才能使用,两边同时加上一次项系数一半的平方,并且使用使用完全平方根来解决,并且使用转化的思想
3.公式法;这个方法根据配方法演变而来,求根的公式x=-b±sqrt(b2-4ac)/2a通过这个公式求解这个根。这个方程一定要找准abc的值,然后代入公式即可求出,一元二次方程最多有两个实数解
4.因式分解法;根据字面意思就能理解,方程左边易于分解右边等于0,得到两个一元一次方程
根的判别式,b2-4ac,叫做达特记作▲,通过达特的不同值能判断不相同的根
韦达定理,x1+x2=-b/a x1x2=c/a

二次函数

形如y=ax2+bx+c的函数叫做二次函数,必须是整式函数的式子x最高次幂为2称为二次函数,二次函数的图像都是抛物线,开口或者朝上朝下
二次函数的平移和平面直角坐标系的平移类似y=a(x-h)2+k±m上下移 y=a(x-h±m)2+k左右移
1.一般式y=ax2+bx+c已经知道抛物线的三个点
2.顶点式y=a(x-h)2+k已经知道抛物线上顶点坐标,选择顶点式
3.双根式y=a(x-x1)(x-x2),与一元二次方程很类似
二次函数,列表找出对应的xy值,然后描点最后连成一条线,为什么二次函数会有抛物线,因为平方有两种情况
a控制抛物线开口大小,b直线x=-b/2a为对称轴,c抛物线和y轴的交点
1.a>0抛物线开口朝上,对称轴x=-b/2a,函数有最小值
2.a<0抛物线开口朝下,对称轴x=-b/2a,函数当a<0函数有最大值
二次函数实际应用和一元二次方程类似,不再赘述

旋转

旋转,把一个平面内一个顶点沿某一个方向转动一个角度,叫做图形的旋转,这个顶点叫做图形旋转中心,转动的角叫做旋转角,那这旋转前后的点叫做对应点
旋转前后的图形全等,对应点到旋转中心的距离相等,对应的点连接的角等于旋转角(夹角彼此相等

把一个图形绕着一个点旋转180°,如果能和另一个图形重合,那么说这两个图形点对称或者中心对称,那么这个点叫做对称中心 那么图形对应点叫做关于中心的对称点两个图形是全等
对称中心他是一个点,并且是旋转180°,互相重合

在一个平面内,线段绕着一个固定点旋转一周,另一个端点叫做圆,固定的点叫做圆心,线段叫做半径,这些概念早在小学都理解了
以O为圆心的圆读作圆O
圆上各个点都等于一个长度,到圆心距离等于定长的点在圆上
连接圆上两个点的线段,一条弦对应两条弧,大的弧叫做优弧,小的叫做劣弧
直径最长的弦
圆弧曲线,圆上任意两点间的部分,记作⌒AB,计算公式,弧长=nΠr/180(n为弧度)
半圆弧加上直径
圆的直径是圆的过圆心的对称轴
切线当直线和圆有唯一公共点的时候,当圆心到直径距离等于半径的时候,还得在半径的外端,垂直于半径
扇形两种计算方法,一种依据角度的,一种依据公式,计算公式,面积1/2×l×r(l为弧长r为半径)
圆锥圆锥地面任一点与圆锥顶点连线叫做母线l,圆锥的底面积就是一个圆,侧面积Πrl,底面积为圆,两者相加为全面积

概率

我们把客观事实叫做必然事件,主管事实叫做不可能事件,在一定条件下可能发生也有可能不发生的事叫做随机事件,随机事件也是有不同的可能性的
调差对象更要有广泛性随意性随机性,一次实验的实验结果是有限的
频率是发生过的,概率是一种估计
如果一次试验,有n种可能的结果,并且他们的发生的可能性相等A包含m种结果,那么他们的概率就是P(A)=m/n,通常使用函数P来表示
概率如何来求?1.列举 2.估计
根据一个随机事件发生的频率来逐渐稳定到常数,可以估计发生的概率,其实概率就是一种估计学
概率其实就是所占的一个比
实验的次数越点多,所得到的频率越能反应概率大小

反比例函数

反比例函数,两个变量xy的形式为y=k/x(k是常数,并且k≠0)
叫做x和y成反比例
反比例函数的图像由k决定
1.列表,表示不同的变量x和y的值 2.描点,多取数多描,更好的反应趋势 3.画的时候需要用尽量光滑的线,双曲线

相似

在四条线段a、b、c、d中,如果a与b的比等于c与d的比,也就是a/b=c/d那么这四条线段就叫做比例线段,简称比例线段
比例的1.基本性质 ad=bc 2.等比性质 a+c+…+m/b+d+…+n=a/b 3. 合比性质 a/b=c/d那么a±b/b=c±d/d
相似,是指形状相同,两个图形相似,可以看成一个图形是由另一个图形放大或者缩小而成的,那么全等就是一种特殊的相似图形
相似多边形的对应角相等,对应边成一定的比例,这两个条件缺一不可
相似三角形,三个角对应相等,三条边成比例,我们就说这两个图形相似,用符号~表示,读作相似于
判定定理 1.三边对应成比例,两个三角形相似 2.两边对应成比例,并且夹角相等,两个三角形相似 3.两角对应相等
这一类题通常是由条件但是没有结论的,从条件出发,通过分析比较猜想来找多种解法和结论,然后再证明
一般一些图形都是平移对称旋转的运动方式,这三种的形状大小都没有发生变化
位似两个多边形不仅相似,对应点连线相交,对应边互相对应平行,又叫位似变换
1.可以利用几何来画 2.代数画法也就是运用平面直角坐标系

三角函数

三角函数在高中非常重要
1.正弦 sinA=a/c 对边比斜边 2.余弦cosA=b/c 邻边比斜边 3.正切tanA=a/b 对边比邻边
这三个函数都有唯一的值,这些函数没有单位
这是所有的三个函数,都叫做锐角三角形的函数

投影

当我们从某一个角度观察物体的时候,所看到的物体叫做试图,三视图是主视图、俯视图、左视图的总成,他是从三个方向分别表示形状的试图
主视图:从前往后 左视图:从左往右 俯视图从上往下
三视图,长对正,高对齐,宽相等
三视图还原几何
三视图的理解已经再上面理解了,不再赘述了
由三视图还原几何体,一般需要根据各个试图的想象从各个方向看到的几何体形状,然后综合确定几何体的形状,根据关系确定轮廓的位置,以及各个方向的尺寸

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值