概率

概率

概率最早出现在人类的赌博中,由一个很牛的人提出来的一个问题:两个赌徒下了相同赌注,约定先获胜3局的一方获得全部赌金,在A胜2局、B胜1局的情况,由于一个人有事情,赌局不得不结束了,那么赌金怎么分配?
这就是数学的一个分支学,概率
之前听过一些前辈和大佬说概率是真的很难很变态
对于上面提到的赌金分配的问题,解答是这样:A赢得下一局的可能性是50%,结束;B赢得下一句达成平局的可能性是50%,A和B决战的时候以3:2结束的可能性是25%,结束;所以A的胜利率是75%,B的胜利率是25%,所以赌金就这样分配好了
emmmmm
确实不简单
一些现象在有的试验中结果呈不确定性,而在有的试验中又具有规律性,这一现象称为随机现象
随机现象的三个特点,在高中数学中已经了解了,我们不再赘述了
其实概率学很像博弈论
1.某个试验的所有可能结果的集合叫做样本空间,一般叫做S,S的元素就是试验的每个结果,叫做“样本点”,一般假设S由有限元素组成,S的子集叫做“随机事件”
某个试验中,当且仅当这一子集中的一个样本点出现时,称这一事件“发生”由一个样本点组成的单个元素的集合叫做基本事件
2.AB的并集叫做和事件,至少有一个发生,和事件就会发生,有的时候记作A+B
3.AB的交集叫做积事件,两个事件必须都发生,积事件才能发生,有的时候记作A×B
4.当有多个事件的时候,两个事件一般可以用类似于西格玛的东西来表示
5.如果在相同条件下进行了n次试验,在这n次试验中,事件A发生了NA次,那么NA/n叫做A事件发生的频率,即发生的可能性
在多次试验中,事件A发生的频率总是在某个意义下接近某一个常数,在附近摆动,这个常数就是A的概率,叫做P(A)
概率具有一下的几个性质,非负性、规范性、容斥性
6.古典概率,概率的计算方法不一样,可以分为古典概率、试验概率、试验概率和主观概率;古典概率又叫事前概率,指,在随机事件中各种可能发生的结果和出现的次数都可以演绎或者推导求出来,不需要经过试验结果计算各种可能的概率
最早的概率实在赌博、抛骰子、摸球中开始的
这一类的游戏共同的特点就是:
(1)试验的样本空间有限,比如,硬币正反两面,骰子六个点
(2)试验的每一个结果出现的可能都相同
(3)随机现象所能发生的事件互不相容,也就是独立的,比如,硬币只可以是正面或反面,不可能是即使正面又是反面
在计算古典概率的时候,如果在全部可能出现的基本事件范围内,构成事件A的基本事件有a个,不构成A的基本事件有b个,那么P(A)=a/a+b,其实这个公式和原公式差不多

数学期望

我们来玩一个游戏,如果有14张牌,其中有一张是A,现在我来坐庄,一块钱赌一次,如果你抽中A我给你10块,如果没抽中,你的一块钱就给我了;这个游戏对谁有利?
当然是“我”,因为14张中只有一张是A,显然抽到A的概率太小了;很多菜鸡(我就是)会认为,抽中给10块,没中就1块还是庄家亏了,其实要计算的是概率
其实这里要的就是数学期望,它可以理解成某件事情大量发生之后的平均结果
期望值其实是试验中每次可能的结果的概率乘以其结果的总和
数学期望在生活中有着十分广泛的应用,经常理性决策的基础,不能只考虑最理想的结果最期望的结果
其实在赌场中,你的数学期望值就是一个负数,其实无论利益再大,最大的收益依旧是赌场
期望值的计算,X是一个离散的随机变量,输出相对的概率P,那么期望值E(X)=PX
比如我们在投骰子的时候,每一个点数的概率都是1/6,那么E(X)=1×1/6+2×1/6+…
数学期望的几个公式:
1.对于任何的随机变量X和Y以及常量a和b,都有E(aX+bY)=aE(X)+bE(Y)
2.当两个随机变量X和Y独立并且各自都有一个已定义的期望时有:E(XY)=E(X)+E(Y)
3.全概率公式;假设B是一个概率空间的有限或者可数无限的分割,且每个集合B是一个可测集合,则对于任意事件A有全概率公式:P(A)=P(A|B)P(B);其中P(A|B)是B发生后的A的条件概率
4.全期望公式;E(Y)=E(E(Y|X))=P(X=xi)E(Y|X=xi)
对于期望问题,递推是个好东西,快速有效率,我们不需枚举所有的情况,而是根据已经求出来的期望推导出其他的期望
如果对于比较难找递推式的问题,就可以利用期望定义,或者利用全概率公式解决这类问题
例1:红色笔
在40支圆珠笔中有30支黑色的,10支红色的,从中任意取出4支,计算其中至少有1支红色笔的概率
设从40支笔中任取4支,设ABCD表示1支,2支,3支,4支的事件
P(A)=C(10,1)×C(30,3)/C(40,4)
P(B)=C(10,2)×C(30,2)/C(40,4)
…依(bu)次(xiang)类(xie)推(le)…
最因为事件两两互斥,需要需要将集合并起来
或者也可以计算4支全是黑色的情况,然后用总情况减去即可
例2:罚球
有甲乙两个篮球运动员,假设他们的罚球命中率分别是60%和50%,现在两个人各罚球一次,正常情况:
1.两个人都命中的概率
2.只有1个人命中的概率
3.至少有1个人命中的概率
两人投篮的事件是相互独立的,用-A和-B分别表示甲乙没有投中的情况,所以:
P(A∩B)=P(A)×P(B)=0.6×0.5=0.3
P((A∩-B)∪(-A∩B))=P(A∩-B)+P(-A∩B)
=P(A)×P(-B)+P(-A)×P(B)
=P(A)×P(1-P(B))+P(1-P(A))×P(B)
=0.6×(1-0.5)+0.5×(1-0.6)
=0.5
0.5+0.3=0.8
例3:
一项工作由甲一个人完成,平均需要4小时,而乙有0.4的概率来帮忙,两个人完成平均只需要3个小时,用X表示完成工作的人数,Y表示完成工作的期望时间,由于这项工作要么一个人完成,要么两个人完成,那么这项工作完成的期望时间E(Y)=P(X=1)E(Y|X=1)+P(X=2)E(Y|X=2)=3.6

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于LSTM的财务因子预测选股模型LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值