典型的并查集的运用,和这题类似的有一个三角关系的题目,思路类似,但是实现起来稍微难一点,这个题目的关键就是只有两种颜色,这个就给我们计算关系带来了很大的便利,设re[x] 表示x和它父亲节点的关系,那么x和他爷爷节点的关系就是
( re[x] + re[pre[x]] ) % 2; 这个关系不分方向,博客里面又个同数据结构专题的J题,难度相对这个就大一点。那么只要有关系的两个点,那么我们就把他们放到同一个并查集里面,那么位于不同并查集的就是我们要输出3的点,相同并查集的点,因为压缩路径的关系,都会连接在根节点上,那么他们两个之间的关系通过三角关系推导即可。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6 + 10;
int pre[maxn],re[maxn];
void init(int n){
for (int i=0; i<n; i++) {
pre[i] = i;
re[i] = 0;
}
}
int find(int x){
if (pre[x] == x)
return x;
int fx = find(pre[x]);
re[x] = (re[x] + re[pre[x]]) % 2;
pre[x] = fx;
return fx;
}
void join(int x,int y,int opt){
int fx = find(x),fy = find(y);
pre[fx] = fy;
re[fx] = ((opt + re[y]) % 2 + re[x]) % 2;
}
int main(){
int n,m,x,y,p;
scanf("%d%d",&n,&m);
char opt;
init(n);
for (int i=0; i<m; i++) {
cin >> opt;
scanf("%d%d",&x,&y);
if (opt == 'A'){
cin >> p; p--;
scanf("%d",&p);
join(x, y, p);
}else if (opt == 'Q'){
int fx = find(x),fy = find(y);
if (fx == fy){
int ans = (re[x] + re[y]) % 2;
if (ans == 0)
printf("%d\n",1);
else
printf("%d\n",2);
}else{
printf("%d\n",3);
}
}
}
return 0;
}