之前的自己的八皇后问题是用一个二维数组去模拟的,第一次做没有被卡,但不是一个很好的方法,今天在洛谷上重新做了一下这道题,有大佬给出了一个很好的想法,记录一下,文章注明为转载。
我们四个数组a,b,c,d 。a[i] = j 代表第i行第j列放了一个棋子,b记录当前列能不能用,c记录从左下到右上的对角线能不能用,d记录右下到左上的对角线能不能用。b数组好理解,但是c和d需要利用到对角线的一些性质,从左上到右下的对角线上的点他们的横纵坐标差是固定的,而左下到右上方的对角线上的点,他们的和是固定的,每一条对角线上述的值都是不同的,那么c和d数组就可以通过判断当前位置的横纵坐标差与和来判断当前位置是否可行。
代码如下
#include <bits/stdc++.h>
using namespace std;
int a[100],b[100],c[100],d[100];
int n,cnt = 0;
void dfs(int i){
for (int j=1; j<=n; j++) {
if (b[j] == 0 && c[i+j] == 0 && d[i-j+n] == 0){
a[i] = b[j] = c[i+j] = d[i-j+n] = j;
if (i == n){
cnt++;
if (cnt <= 3){
for (int i=1; i<=n; i++){
if (a[i]) printf("%d ",a[i]);
}
printf("\n");
}
} else dfs(i+1);
a[i] = b[j] = c[i+j] = d[i-j+n] = 0;
}
}
}
int main(){
scanf("%d",&n);
dfs(1);
printf("%d\n",cnt);
return 0;
}