POJ2018(二分法)题解

POJ2018(二分法)

题目说明

解题思路

(首先该专题是二分查找,于是自然是从二分法开始入手。不过我再次之前并没有刷过题,不太清楚二分法的更多用法,所以在百度的帮助下找到了该题的解题思路)。

解题思路是用二分法查找可能的平均值,对于每个可能的平均值,对数据进行动态规划查找,看是否存在这样一个平均值使得比可能的平均值要大。

那么问题就变成如何查找是否存在这样的一个平均值了。假设要查找的平均值mean,我们只要查找 ∑ a [ i ] a [ i ] + a [ i + f ] \sum_{a[i]}^{a[i]+a[i+\rm f]} a[i]a[i]+a[i+f]的值或者 ∑ a [ i ] a [ i ] + a [ i + f ] \sum_{a[i]}^{a[i]+a[i+\rm f]} a[i]a[i]+a[i+f]再加上后面的数是不是大于 m e a n ∗ f \rm mean*\rm f meanf。显然用前缀和会方便很多。另外加上后面的数时,只要考虑后面的数是不是比平均值大就行了。不过需要找的平均值的 有个注意点,后面的数是要减去 m e a n \rm mean mean的,这样才能算的是平均值,需要很轻度的推算。

代码

#include<iostream>
#include<cstdio>
using namespace std;
const int MAXN = 100000 + 5;
int N, F;
double num[MAXN];
double sum[MAXN];
double rmaxsum[MAXN];
double l = 9999999, r = 0;
bool qualify(double tans)
{
    for (int i = N; i >= 1; i--)
        rmaxsum[i] = max(num[i] - tans, rmaxsum[i + 1] + num[i] - tans);
    for (int i = 1; i <= N - F + 1; i++)
    {
        if (sum[i + F - 1] - sum[i - 1] >= F * tans)
            return true;
        if (sum[i + F - 1] - sum[i - 1] - F * tans + rmaxsum[i + F] >= 0)
            return true;
    }
    return false;
}
int main()
{
    cin >> N >> F;
    for (int i = 1; i <= N; i++)
    {
        scanf("%lf", &num[i]);
        sum[i] = sum[i - 1] + num[i];
        r = max(r, num[i]);
        l = min(l, num[i]);
    }
    while (l < r - 0.0001)
    {
        double mid = (r + l) / 2;
        if (qualify(mid))
            l = mid;
        else
            r = mid;
    }
    cout << int(r * 1000) << endl;
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值