数字医疗时代的数据安全如何保障?

在这里插入图片描述

导读:

十四五规划下,数据安全成为国家、社会发展面临的重要议题,《数据安全法》《个人信息保护法》《关键信息基础设施安全保护条例》已陆续施行。如何做好“数据安全建设”是数字时代的必答题。

数据安全问题的应对和国家数据安全制度的布局不仅关涉到大数据时代个人安全、公共安全、国家安全,也关系到我国在全球新一轮的信息技术变革中如何实现从跟跑、并跑到领跑的转变。作为数字经济产业重要分支的数字健康产业,随着各种新业务、新应用的不断出现,也使得医疗数据在全生命周期各阶段面临着越来越多的安全挑战。

本文概述了我国医疗行业数据安全现状,对医疗机构如何保障数据安全问题提供参考建议。

01

医疗行业数据安全现状

位于美国巴尔的摩的医疗人工智能分析企业Protenus根据HHS公告数据和媒体公开报道发布的《2019年医疗行业数据安全报告》显示,2019年全球医疗行业黑客攻击事件较2018年猛增了48%,而自2016年以来,医疗行业平均每天至少会发生一起患者数据泄漏事件,全美一年就有12.55%民众的医疗记录遭遇泄露、意外公开或者盗窃。无独有偶,据IBM Security的《2020年数据泄露成本报告》,仅2020年一年,全球医疗数据泄露平均成本高达713万美元,较2019年增长了10%以上。

医疗行业数据安全问题是全世界共同面临挑战,虽然2021年4月6日,国家医保局发布

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
数字识别技术是一种将数字图像中的数字或文本信息识别出来的技术,它可以应用于自动化数据输入、自动车牌识别、自动身份证识别、自动化文字识别等领域。随着数字时代的到来,数字识别技术的应用范围越来越广泛,数字识别技术的研究也越来越受到关注。 数字识别技术的应用领域非常广泛,例如,在金融领域,数字识别技术可以应用于支票扫描和自动化银行转账等场景;在交通领域,数字识别技术可以应用于车牌识别和交通信号灯识别等场景;在安防领域,数字识别技术可以应用于人脸识别和身份证识别等场景;在医疗领域,数字识别技术可以应用于医疗图像识别等场景。随着数字识别技术的不断发展,它的应用领域将会更加广泛,对于提高生产效率、减少人力成本、提高安全性等方面都具有重要意义。 数字识别技术的研究也是计算机视觉和模式识别领域的重要研究方向之一。数字识别技术的研究可以帮助我们更好地理解数字图像处理、模式识别和机器学习等领域的基本理论和方法,同时也可以推动这些领域的发展。数字识别技术的研究还可以为其他领域的研究提供基础技术支持,例如,在自动驾驶领域,数字识别技术可以应用于道路标志识别和信号灯识别等场景。 因此,数字识别技术的研究背景和意义非常重要,它对于推动数字时代的发展,提高社会生产效率和人类生活质量都具有重要作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CECBC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值