对于固定起点的最短路算法,我们称之为单源最短路算法。单源最短路算法很多,最常见的就是dijkstra算法。
dijkstra主要用的是一种贪心的思想,就是说如果i...s...t...j是最短路,那么i和j之间的任意两点s,t之间也一定是最短路,非常好证,如果s,t之间不是最短路,那么必然存在最短路,那么i到j也不是最短路造成了矛盾。
而dijkstra就是运用这样的思想,把起点首先放进一个集合S中,其他的点在另一个集合中,每次取起点经过集合S中的点可达的最短路的点,加入到集合S中,并且根据新加入的店刷新一遍最短路。直到所有的点都在集合S中。
如上图,假设以1为起点,dis[i]为起点到i点的最短距离,如果没法直达则为INF
第一次:S中只有1,那么1能直达的点有2,3,取路径最短的3加入S,并更新一遍dis,发现6可达,dis[6] = 20;
第二次:S中有1,3,可达的有2,6,取2,则4,5可达,dis[4] = 21,dis[5] = 10;
第三次:S中有1,2,3,可达的有4,5,6,取5,到4多了新路径且比原来近,更新dis[4] = 13;
第四次:S中有1,2,3,5,可达的有4,6,取4,到6多了新路径且比原来近,更新dis[6] = 15;
第五次:S中有1,2,3,4,5,可达的有6,只有6不在S中,取6,不更新,完成算法
要注意的是外围循环是除了起点外的点数,如果多一次,pos会无法赋值因为所有的点都遍历过了,造成变量没有初始化而程序崩溃。
代码如下:
#include <