单源最短路算法

本文介绍了单源最短路问题,包括Dijkstra算法和SPFA算法。Dijkstra算法以O(nlogn)的时间复杂度找到源节点到其他所有节点的最短路径,适用于没有负权边的图。而SPFA算法则用于可能存在负权边的情况,通过判断节点被松弛的次数来检测负环。此外,还提到了负环对最短路径的影响以及这两种算法的应用场景。
摘要由CSDN通过智能技术生成

最短路径:从某顶点出发,沿图的边到达另一顶点所经过的路径中,各边权值之和最小的一条路径

单源最短路:在图中,指定一个点为源,求源到其它各点的最短路径

 

1.Dijkstra算法  o(nlogn)

流程

  1. 录入图的信息并完成初始化
  2. 找到目前离源节点最近的点P
  3. 利用P的所有出边优化源节点到P出边邻近节点的边权值
  4. 图除了源节点其余n-1个结点都优化过,那么进行5,否则进行2
  5. 输出
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int maxn=100;
const int maxm=10000;
int book[maxn],dis[maxn],head[maxn],cnt;
struct Node{
	int id;
	int d;
	int next;
}side[maxm];
struct node{
	int id;
	int cost;
	node(){}
	node(int id,int cost):id(id),cost(cost){}
	friend bool operator < (node a,node b)
	{
		return a.cost>b.cost;
	}
};
void init()
{
	memset(head,-1,sizeof(head));
	cnt=0;
}
void add(int x,int y,int d)
{
	side[cnt].id=y;
	side[cnt].d=d;
	side[cnt].next=head[x];
	head[x]&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值