数据结构-队列

队列数据结构详解
本文深入探讨了队列数据结构的原理与应用,包括队列的基本概念、操作方法及其在不同场景下的实现方式,如使用数组、链表或两个栈来实现队列,为读者提供了全面的理解和实践指导。

队列:先进先出的一种思想,就和我们现实世界排队一样,先到的人先处理。

队列基本操作:长度,是否为空,是否为满,遍历显示,添加元素,获取对头元素

实现方式:数组,链表,两个栈

创建队列类,包含属性及方法

public class ArrayQueue {
    private int maxSize;
    private int front;
    private int rear;
    private int[] arr;

    //创建队列的构造器
    public ArrayQueue(int arrMaxSize) {
        maxSize = arrMaxSize;
        arr = new int[maxSize];
        front = -1;//指向队列头部,front指向队列头的前一个位置
        rear = -1;//指向队列尾部
    }
    //队列是否满了
    public boolean isFull() {
        return rear == maxSize - 1;
    }
    //队列是否为空
    public boolean isEmpty(){
        return rear==front;
    }
    //往队列中添加数
    public void add(int n){
        //首先判断是否满了
        if(isFull()){
            return;
        }
        rear++;
        arr[rear]=n;
    }
    //获取队头的数据
    public int get(){
        //判断是否为空
        if(isEmpty()){
            System.out.println("队列为空!");
        }
        front++;
        return arr[front];
    }

    //遍历队列
    public void show(){
        if(isEmpty()){
            System.out.println("队列为空!");
            return;
        }
        for (int i=0;i<arr.length;i++){
            System.out.printf("arr[%d]=%d\n",i,arr[i]);
        }
    }
    //获取队头的数据
    public int head(){
        if(isEmpty()){
            throw new RuntimeException("队列空的,不能取值");
        }
        return arr[front+1];
    }
}
public class LinkedQueueTest {
    public static void main(String[] args) {
        LinkedQueue linkedQueue =new LinkedQueue();
        linkedQueue.add("zico");
        linkedQueue.add("DEAN");
        linkedQueue.add("zion");
        linkedQueue.add("loco");
        linkedQueue.add("simon");
        linkedQueue.add("gray");
        linkedQueue.printQueue();
        linkedQueue.peek();
        linkedQueue.pop();
        linkedQueue.printQueue();
        linkedQueue.peek();
        linkedQueue.length();
    }
}

// 节点类
class Node {
    public String data;
    public Node next;

    // 构造器
    public Node() {
        this.data = null;
        this.next = null;
    }
}

// 链表队列类
// 链表不指定长度
class LinkedQueue {
    public Node front;
    public Node rear;
    public int maxSize;

    // 构造函数
    public LinkedQueue() {
        Node node = new Node();
        front = rear = node;
        maxSize = 0;
    }

    // 队列是否为空
    public boolean isEmpty() {
        //两种方式均可
        //return front == rear;
        return front.next == null;
    }

    // 入队列
    public void add(String name) {
        Node temp = new Node();
        temp.data = name;
        rear.next = temp;
        rear = temp;
        maxSize++;
    }

    // 出队列
    public void pop() {
        if (isEmpty()) {
            System.out.println("队列为空!");
            return;
        }
        Node temp = front.next;
        System.out.println("出队列:" + temp.data);
        front.next = temp.next;
        if (rear == temp) {
            rear = front;
        }
        maxSize--;
    }

    // 队列长度
    public void length() {
        System.out.println("队列长度:" + maxSize);
    }

    //遍历队列
    public void printQueue() {
        for (Node current = front.next; current != null; current = current.next) {
            System.out.print(current.data + " ");
        }
        System.out.println();
    }

    // 队列头元素
    public void peek(){
        System.out.println("头元素:"+ front.next.data);
    }

}
import java.util.Stack;

public class StackQueueTest {
    public static void main(String[] args) {

        // Your MyQueue object will be instantiated and called as such:
        MyQueue obj = new MyQueue();
        obj.push(1);
        int param_2 = obj.pop();
        System.out.println(param_2);
        obj.push(2);
        int param_3 = obj.peek();
        System.out.println(param_3);
        boolean param_4 = obj.empty();
        System.out.println(param_4);

    }
}

class MyQueue {
    Stack<Integer> stack1 = new Stack<>();
    Stack<Integer> stack2 = new Stack<>();

    /**
     * Initialize your data structure here.
     */
    public MyQueue() {

    }

    /**
     * Push element x to the back of queue.
     */
    public void push(int x) {
        stack1.push(x);

    }

    /**
     * Removes the element from in front of queue and returns that element.
     */
    public int pop() {
        if (stack2.size() == 0) {
            while (!stack1.isEmpty()) {
                int temp = stack1.peek();
                stack2.push(temp);
                stack1.pop();
            }
        }
        int res = stack2.peek();
        stack2.pop();
        return res;
    }

    /**
     * Get the front element.
     */
    public int peek() {
        if (stack2.size() == 0) {
            while (!stack1.isEmpty()) {
                int temp = stack1.peek();
                stack2.push(temp);
                stack1.pop();
            }
        }
        int res = stack2.peek();
        return res;
    }

    /**
     * Returns whether the queue is empty.
     */
    public boolean empty() {
        return stack1.isEmpty() &stack2.isEmpty();
    }
}

小组队列

 

【源码免费下载链接】:https://renmaiwang.cn/s/os2te 大整数乘法是计算机科学中的一个重要领域,特别是在算法设计和数学计算中有着广泛应用。它涉及到处理超过标准整型变量范围的数值运算。在C++编程语言中,处理大整数通常需要自定义数据结构和算法,因为内置的`int`、`long long`等类型无法满足大整数的存储和计算需求。以下是对这个主题的详细阐述:1. **大整数数据结构**: 在C++中,实现大整数通常采用数组或链表来存储每一位数字。例如,可以使用一个动态分配的数组,每个元素表示一个位上的数字,从低位到高位排列。这种数据结构允许我们方便地进行加减乘除等操作。2. **乘法算法**: - **暴力乘法**:最直观的方法是类似于小学的竖式乘法,但效率较低,时间复杂度为O(n^2)。 - **Karatsuba算法**:由Alexander Karatsuba提出,将两个n位数的乘法转化为三个较小的乘法,时间复杂度为O(n^1.585)。 - **Toom-Cook算法**:比Karatsuba更通用,通过多项式插值和分解进行计算,有不同的变体,如Toom-3、Toom-4等。 - **快速傅里叶变换(FFT)**:当处理的大整数可以看作是多项式系数时,可以利用FFT进行高效的乘法,时间复杂度为O(n log n)。FFT在数论和密码学中尤其重要。3. **算法实现**: 实现这些算法时,需要考虑如何处理进位、溢出等问题,以及如何优化代码以提高效率。例如,使用位操作可以加速某些步骤,同时要确保代码的正确性和可读性。4. **源代码分析**: "大整数乘法全解"的源代码应包含了上述算法的实现,可能还包括了测试用例和性能比较。通过阅读源码,我们可以学习如何将理论算法转化为实际的程序,并理解各种优化技巧。5. **加说明**: 通常,源代码附带的说明会解释
内容概要:本文详细介绍了一个基于Java与Vue技术栈的向量数据库语义检索与相似文档查重系统的设计与实现。系统通过集成BERT等深度学习模型将文本转化为高维语义向量,利用Milvus等向量数据库实现高效存储与近似最近邻检索,结合前后端分离架构完成从文档上传、向量化处理、查重分析到结果可视化的完整流程。项目涵盖需求分析、系统架构设计、数据库建模、API接口规范、前后端代码实现及部署运维等多个方面,并提供了完整的代码示例和模块说明,支持多格式文档解析、智能分段、自适应查重阈值、高亮比对报告生成等功能,具备高扩展性、安全性和多场景适用能力。; 适合人群:具备一定Java和Vue开发基础的软件工程师、系统架构师以及从事自然语言处理、知识管理、内容安全等相关领域的技术人员,尤其适合高校、科研机构、企业IT部门中参与智能文档管理系统开发的专业人员。; 使用场景及目标:①应用于学术论文查重、企业知识产权保护、网络内容监控、政务档案管理等需要高精度语义比对的场景;②实现深层语义理解下的文档查重,解决传统关键词匹配无法识别语义改写的问题;③构建可扩展、高可用的智能语义检索平台,服务于多行业数字化转型需求。; 阅读建议:建议读者结合提供的完整代码结构与数据库设计进行实践操作,重点关注文本向量化、向量数据库集成、前后端协同逻辑及安全权限控制等核心模块。在学习过程中应逐步部署运行系统,调试关键接口,深入理解语义检索与查重机制的工作原理,并可根据实际业务需求进行功能扩展与模型优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值