[FWT] UOJ#310. 【UNR #2】黎明前的巧克力

题意

这里写图片描述
这里写图片描述

题解

好题。做了可以加深对DWT的理解。
先把题目要求的稍微转换一下,可以发现若我们找到一个异或和为 0 的集合S,则 2|S| 种把 S 分成两半的方案都是可行的方案。
所以我们考虑 DP : dp(i,j) 表示前 i 个元素,组成的集合异或和为j 的所有集合的贡献。定义集合S的贡献为 2|S| ,则转移方程为:
dp(i,j)=dp(i1,j)+dp(i1,j xor a[i])2
这样复杂度太高了,考虑优化。
观察发现,可以和 XOR 卷积联系起来,对于每个 a[i] ,我们构造数组 Fi ,其中 Fi(0)=1, Fi(a[i])=2 。这样我们把 n 个数组卷起来就是答案了。
我们设a[i] 的上界为 m (补到2的次幂),则这个算法复杂度为O(mlogmn)
这样就可以拿到……0分了……还不如上面直接DP。
但不要放弃思路,之所以复杂度不理想,是因为每个 F 只有2个地方有值,而 m 很大,FWT 做了很多无用功。

作为新时代的OI少年,我们一定要把这个FWT优化到极致:

我们现在要求的是 ANS=DWT(F1)DWT(F2)...DWT(Fn)
最后把 ANS 逆变换一下就是答案。
考虑 DWT(Fi) 中的位置 0 和位置 a[i] DWT(Fi) 的贡献:

DWT(A)i=j=0n1Ajf(i,j)

因为 DWT 是线性变换,所以可以分开考虑。
对于位置 0 上的1,我们知道 f(k,0)=(1)0 都等于 1 ,所以对每位都加了1
对于位置 a[i] 上的 2 ,对第k位都加了f(k,a[i])2
所以得到 DWT(Fi)j=1+f(j,a[i])2
所以 ANSi=(1+f(i,a[1])2)(1+f(i,a[2])2)...(1+f(i,a[n])2)
(1+f(i,a[j])2) 这个东西只会等于 3 1。所以我们只要知道分别有几个即可。
如何才能知道呢?乘起来难求,加起来好求。
DWT(F1)+DWT(F2)+...+DWT(Fn)=DWT(F1+F2+...+Fn)
F 全部加到一起,做一遍FWT即可得到。
对于 Ans 的每位,若我们求出了这些数的和为 S ,那么解个方程,
3 x 个,1 (nx) 个, 3x(nx)=S ,得 x=n+S4 。这样就好了。 ANSi=3n+S4(1)3nS4
妙啊……

复杂度 O(mlogm)

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long LL;
const LL maxn=1100005, MOD=998244353, Inv=(MOD+1)/2;
inline char gc(){
    static char buf[100000],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int getint(){
    char ch=gc(); int res=0;
    while(!('0'<=ch&&ch<='9')) ch=gc();
    while('0'<=ch&&ch<='9') res=(res<<3)+(res<<1)+ch-'0', ch=gc();
    return res;
}
int n,m,a[maxn];
void FWT(int a[],int n,int _k){
    for(int m=2;m<=n;m<<=1)
     for(int i=0;i<=n-1;i+=m)
      for(int j=0;j<=m/2-1;j++){
        int t0=a[i+j], t1=a[i+j+m/2];
        if(_k==1) a[i+j]=t0+t1, a[i+j+m/2]=t0-t1;
             else a[i+j]=(LL)(t0+t1)*Inv%MOD, a[i+j+m/2]=(LL)(t0-t1+MOD)%MOD*Inv%MOD;
      } 
}
LL Pow(int a,int b){
    LL res=1;
    for(LL w=a%MOD;b;b>>=1,w=w*w%MOD) if(b&1) res=(res*w)%MOD;
    return res;
}
int main(){
    freopen("uoj310.in","r",stdin);
    freopen("uoj310.out","w",stdout);
    n=getint();
    for(int i=1;i<=n;i++){
        int x=getint();
        a[x]+=2; a[0]++; m=x>m?x:m;
    }
    int _m=1; while(_m<=m) _m<<=1; m=_m;
    FWT(a,m,1);
    for(int i=0;i<=m-1;i++){
        a[i]=Pow(3,(a[i]+n)>>2)*( ((3*n-a[i]>>2)&1)?MOD-1:1 )%MOD;
    }
    FWT(a,m,-1);
    printf("%d\n",(a[0]-1+MOD)%MOD);
    return 0;
} 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值