[容斥] Codeforces#428 (Div. 2) 839D. Winter is here

题意

给出一个数集,求所有非空子集的权值和。
定义一个集合的权值为:若所有元素的gcd=1则权值为0,否则权值为所有元素的gcd乘以集合大小。
n1000001000000

题解

其实是道挺简单的题目,但是因为之前没做过类似的 gcd 的容斥的题,所以当时没做出来。
有这样一个显然的东西:考虑所有d的倍数的数构成的集合,其任意一个子集的所以数 gcd 一定为 d,d2,d3...
根据这个原理就可以容斥了。
res[i] 为所有 gcd 等于 i 的集合的长度的和。最后答案就是 ires[i]i
怎么求 res[i] ?
res[i]=[i]res[i2]res[i3]res[i4]...
记是 i 的倍数的数有 k 个, [i] 就等于:

i=1ki×(ki)=i=1kik!i!(ki)!=i=1kk×(k1i1)=k2k1

然后直接做就好了。复杂度就是那个调和级数,得 O(nlogn)

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxv=1000005,MOD=1000000007;
typedef long long LL;
int n,m,a[maxv],cnt[maxv],res[maxv],ans;
LL pw2[maxv];
int main(){
    //freopen("cf839D.in","r",stdin);
    //freopen("cf839D.out","w",stdout);
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        int x; scanf("%d",&x); 
        m=max(m,x); a[x]++; 
    }
    pw2[0]=1; for(int i=1;i<=n;i++) pw2[i]=pw2[i-1]*2%MOD;
    for(int i=2;i<=m;i++)
     for(int j=1;(LL)i*j<=m;j++) cnt[i]+=a[i*j];
    for(int i=m;i>=2;i--){
        res[i]=pw2[cnt[i]-1]*cnt[i]%MOD;
        for(int j=2;(LL)i*j<=m;j++) res[i]=(res[i]+(MOD-res[i*j]))%MOD;
        ans=(ans+((LL)res[i]*i)%MOD)%MOD;
    }
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值