[阶梯博弈] BZOJ1115: [POI2009]石子游戏Kam

学到了之前没见过的阶梯博弈:
阶梯博弈就是n个台阶,台阶上有若干石子,每次可以选任意一堆往下一层搬任意个(石子到1层以下就不能动了),不能操作的人输。
这个可以转换为Nim游戏,即奇数号的台阶石子的异或和。证明类似,0的状态只能到非0状态,而非0状态一定存在一种方法转移到0状态。

知道这个就可以做这题了。考虑相邻石子的差值,当取某第i堆石头时,i与i-1的差值的减小量等于i+1与i的差值的增加量,且要时刻保证差值非负。
这样就转换成阶梯博弈模型了。

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=2005;
int _test,n,a[maxn];
int main(){
    freopen("bzoj1115.in","r",stdin);
    freopen("bzoj1115.out","w",stdout);
    scanf("%d",&_test);
    while(_test--){
        scanf("%d",&n);
        for(int i=1;i<=n;i++) scanf("%d",&a[i]);
        int ans=0;
        for(int i=n;i>=1;i-=2) ans^=(a[i]-a[i-1]);
        if(ans) printf("TAK\n"); else printf("NIE\n"); 
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值