学到了之前没见过的阶梯博弈:
阶梯博弈就是n个台阶,台阶上有若干石子,每次可以选任意一堆往下一层搬任意个(石子到1层以下就不能动了),不能操作的人输。
这个可以转换为Nim游戏,即奇数号的台阶石子的异或和。证明类似,0的状态只能到非0状态,而非0状态一定存在一种方法转移到0状态。
知道这个就可以做这题了。考虑相邻石子的差值,当取某第i堆石头时,i与i-1的差值的减小量等于i+1与i的差值的增加量,且要时刻保证差值非负。
这样就转换成阶梯博弈模型了。
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=2005;
int _test,n,a[maxn];
int main(){
freopen("bzoj1115.in","r",stdin);
freopen("bzoj1115.out","w",stdout);
scanf("%d",&_test);
while(_test--){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
int ans=0;
for(int i=n;i>=1;i-=2) ans^=(a[i]-a[i-1]);
if(ans) printf("TAK\n"); else printf("NIE\n");
}
}