[数论 拓展欧拉定理] HHHOJ #97【BalkanOI 2016】Power-towers

扩展欧拉定律的运用。

abab%ϕ(p)           gcd(a,p)=1ab                  gcd(a,p)1,b<ϕ(p)ab%ϕ(p)+ϕ(p)   gcd(a,p)1,bϕ(p)(modp)

直接一层一层带入就好了。在快速幂里判断 bϕ(p)

#include<cstdio>
#include<cstring>
#include<algorithm>
#define Fir first
#define Sec second
#define mp(x,y) make_pair(x,y)
using namespace std;
typedef long long LL;
const int maxn=1000005,N=1000000;
int _test,n,m,a[maxn];
int p[maxn],phi[maxn];
bool vis[maxn];
void get_phi(){
    phi[1]=1;
    for(int i=2;i<=N;i++){
        if(!vis[i]) p[++p[0]]=i, phi[i]=i-1;
        for(int j=1;j<=p[0]&&(LL)i*p[j]<=N;j++){
            vis[i*p[j]]=true;
            if(i%p[j]==0){ phi[i*p[j]]=phi[i]*p[j]; break; }
            phi[i*p[j]]=phi[i]*(p[j]-1);
        } 
    }
}
LL gcd(LL x,LL y){ return y==0?x:gcd(y,x%y); }
pair<LL,int> Pow(LL a,LL b,int MOD){
    LL res=1; int k1=0,k2=0; 
    for(;b;b>>=1,a=a*a,a>=MOD?k1=1:0,a%=MOD) if(b&1){ res*=a; k2|=(res>=MOD||k1); res%=MOD; }
    return mp(res,k2);
} 
pair<LL,int> Calc(int k,int m){
    if(m==1) return mp(0,1);
    if(k==n) return mp(a[k]%m,a[k]>=m);
    if(gcd(a[k],m)==1) return Pow(a[k],Calc(k+1,phi[m]).Fir,m);
    pair<LL,int> t=Calc(k+1,phi[m]); //printf("%d: %d %d\n",k,t.Fir,t.Sec);
    return Pow(a[k],t.Fir+(t.Sec?phi[m]:0),m);
}
int main(){
    freopen("hhhoj97.in","r",stdin);
    freopen("hhhoj97.out","w",stdout);
    get_phi();
    scanf("%d%d",&_test,&m);
    while(_test--){
        scanf("%d",&n);
        for(int i=1;i<=n;i++) scanf("%d",&a[i]);
        printf("%d\n",Calc(1,m).Fir);
    }
    return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值