扩展欧拉定律的运用。
ab≡⎧⎩⎨⎪⎪ab%ϕ(p) gcd(a,p)=1ab gcd(a,p)≠1,b<ϕ(p)ab%ϕ(p)+ϕ(p) gcd(a,p)≠1,b≥ϕ(p)(modp)
直接一层一层带入就好了。在快速幂里判断 b≥ϕ(p) 。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define Fir first
#define Sec second
#define mp(x,y) make_pair(x,y)
using namespace std;
typedef long long LL;
const int maxn=1000005,N=1000000;
int _test,n,m,a[maxn];
int p[maxn],phi[maxn];
bool vis[maxn];
void get_phi(){
phi[1]=1;
for(int i=2;i<=N;i++){
if(!vis[i]) p[++p[0]]=i, phi[i]=i-1;
for(int j=1;j<=p[0]&&(LL)i*p[j]<=N;j++){
vis[i*p[j]]=true;
if(i%p[j]==0){ phi[i*p[j]]=phi[i]*p[j]; break; }
phi[i*p[j]]=phi[i]*(p[j]-1);
}
}
}
LL gcd(LL x,LL y){ return y==0?x:gcd(y,x%y); }
pair<LL,int> Pow(LL a,LL b,int MOD){
LL res=1; int k1=0,k2=0;
for(;b;b>>=1,a=a*a,a>=MOD?k1=1:0,a%=MOD) if(b&1){ res*=a; k2|=(res>=MOD||k1); res%=MOD; }
return mp(res,k2);
}
pair<LL,int> Calc(int k,int m){
if(m==1) return mp(0,1);
if(k==n) return mp(a[k]%m,a[k]>=m);
if(gcd(a[k],m)==1) return Pow(a[k],Calc(k+1,phi[m]).Fir,m);
pair<LL,int> t=Calc(k+1,phi[m]); //printf("%d: %d %d\n",k,t.Fir,t.Sec);
return Pow(a[k],t.Fir+(t.Sec?phi[m]:0),m);
}
int main(){
freopen("hhhoj97.in","r",stdin);
freopen("hhhoj97.out","w",stdout);
get_phi();
scanf("%d%d",&_test,&m);
while(_test--){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
printf("%d\n",Calc(1,m).Fir);
}
return 0;
}