拓展欧拉定理总结

1:

欧拉定理:

aϕ(p)1(mod p)   (a,p)=1 a ϕ ( p ) ≡ 1 ( m o d   p )       ( a , p ) = 1

证明:
ϕ(p) ϕ ( p ) 的集合为 S{x1,x2xϕ(p)} S { x 1 , x 2 … … x ϕ ( p ) }
那么容易证明 S={ax1mod p,ax2mod paxϕ(p)mod p} S = { a x 1 m o d   p , a x 2 m o d   p … … a x ϕ ( p ) m o d   p }
因为 a,x a , x 与p互质,所以 ax mod p a x   m o d   p 也与 p p 互质。
xi!=xj,因为互质,所以 axiaxjmod p a x i ≠ a x j mod   p
那么就证明了这一部分。
然后大力推公式:
(aϕ(p)x1x2xϕ(p))mod p ( a ϕ ( p ) ∗ x 1 ∗ x 2 ∗ … … ∗ x ϕ ( p ) ) m o d   p

=ax1(ax2)(axϕ(p))mod p = ( a ∗ x 1 ) ∗ ( a ∗ x 2 ) ∗ … … ∗ ( a ∗ x ϕ ( p ) ) m o d   p

=ax1mod p(ax2mod p)(axϕ(p)mod p)mod p = ( a ∗ x 1 m o d   p ) ∗ ( a ∗ x 2 m o d   p ) ∗ … … ∗ ( a ∗ x ϕ ( p ) m o d   p ) m o d   p

=(x1x2xϕ(p))mod p = ( x 1 ∗ x 2 ∗ … … ∗ x ϕ ( p ) ) m o d   p

所以就有 aϕ(p)1(mod p) a ϕ ( p ) ≡ 1 ( m o d   p )

2:

拓展欧拉定理:
详细见这儿

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值