目录
模型格式介绍
在大型深度学习模型的上下文中,.safetensors
、.bin
和 .pth
ckpt
文件的用途和区别如下:
-
.safetensors
文件:- 这是由 Hugging Face 推出的一种新型安全模型存储格式,特别关注模型安全性、隐私保护和快速加载。
- 它仅包含模型的权重参数,而不包括执行代码,这样可以减少模型文件大小,提高加载速度。
- 加载方式:使用 Hugging Face 提供的相关API来加载
.safetensors
文件,例如safetensors.torch.load_file()
函数。
-
ckpt
文件:- ckpt 文件是 PyTorch Lightning 框架采用的模型存储格式,它不仅包含了模型参数,还包括优化器状态以及可能的训练元数据信息,使得用户可以无缝地恢复训练或执行推理。
-
.bin
文件:- 通常是一种通用的二进制格式文件,它可以用来存储任意类型的数据。
- 在机器学习领域,
.bin
文件有时用于存储模型权重或其他二进制数据,但并不特指PyTorch的官方标准格式。 - 对于PyTorch而言,如果用户自己选择将模型权重以二进制格式保存,可能会使用
.bin
扩展名,加载时需要自定义逻辑读取和应用这些权重到模型结构中。
-
.pth
文件:- 是 PyTorch 中用于保存模型状态的标准格式。
- 主要用于保存模型的
state_dict
,包含了模型的所有可学习参数,或者整个模型(包括结构和参数)。 - 加载方式:使用 PyTorch 的
torch.load()
函数直接加载.pth
文件,并通过调用model.load_state_dict()
将加载的字典应用于模型实例。
总结起来:
.safetensors
侧重于安全性和效率,适合于那些希望快速部署且对安全有较高要求的场景,尤其在Hugging Face生态中。.ckpt
文件是 PyTorch Lightning 框架采用的模型存储格式,它不仅包含了模型参数,还包括优化器状态以及可能的训练元数据信息,使得用户可以无缝地恢复训练或执行推理。.bin
文件不是标准化的模型保存格式,但在某些情况下可用于存储原始二进制权重数据,加载时需额外处理。.pth
是PyTorch的标准模型保存格式,方便模型的持久化和复用,支持完整模型结构和参数的保存与恢复。
加载以及保存
- 加载.safetensors文件:
# 用SDXL举例
import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "/home/bino/svul/models/sdxl/sdxl_lightning_2step_unet.safetensors" # Use the correct ckpt for your step setting!
# Load model.
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(ckpt, device="cuda"))
# unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
# Ensure sampler uses "trailing" timesteps.
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
# Ensure using the same inference steps as the loaded model and CFG set to 0.
pipe("A girl smiling", num_inference_steps=4, guidance_scale=0).images[0].save("output.png")
- 保存/加载.pth文件:
# 保存模型状态字典
torch.save(model.state_dict(), "model.pth")
# 加载模型状态字典到已有模型结构中
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load("model.pth"))
# 或者保存整个模型,包括结构
torch.save(model, "model.pth")
# 加载整个模型
model = torch.load("model.pth", map_location=device)
- 保存/加载.ckpt文件:
import pytorch_lightning as pl
# 定义一个 PyTorch Lightning 训练模块
class MyLightningModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.linear_layer = nn.Linear(10, 1)
self.loss_function = nn.MSELoss()
def forward(self, inputs):
return self.linear_layer(inputs)
def training_step(self, batch, batch_idx):
features, targets = batch
predictions = self(features)
loss = self.loss_function(predictions, targets)
self.log('train_loss', loss)
return loss
# 初始化 PyTorch Lightning 模型
lightning_model = MyLightningModel()
# 配置 ModelCheckpoint 回调以定期保存最佳模型至 .ckpt 文件
checkpoint_callback = pl.callbacks.ModelCheckpoint(
monitor='val_loss',
filename='best-model-{epoch:02d}-{val_loss:.2f}',
save_top_k=3,
mode='min'
)
# 创建训练器并启动模型训练
trainer = pl.Trainer(
callbacks=[checkpoint_callback],
max_epochs=10
)
trainer.fit(lightning_model)
# 从 .ckpt 文件加载最优模型权重
best_model = MyLightningModel.load_from_checkpoint(checkpoint_path='best-model.ckpt')
# 使用加载的 .ckpt 文件中的模型进行预测
sample_input = torch.randn(1, 10)
predicted_output = best_model(sample_input)
print(predicted_output)
在此示例中,我们首先定义了一个 PyTorch Lightning 模块,该模块集成了模型训练的逻辑。然后,我们配置了 ModelCheckpoint 回调函数,在训练过程中按照验证损失自动保存最佳模型至 .ckpt 文件。接着,我们展示了如何加载 .ckpt 文件中的最优模型权重,并利用加载后的模型对随机输入数据进行预测,同样输出预测结果。值得注意的是,由于 .ckpt 文件完整记录了训练状态,它在实际应用中常被用于模型微调和进一步训练。
- 处理.bin文件:
如果.bin
文件是纯二进制权重文件,加载时需要知道模型结构并且手动将权重加载到对应的层中,例如:
# 假设已经从.bin文件中读取到了模型权重数据
weights_data = load_binary_weights("weights.bin")
# 手动初始化模型并加载权重
model = TheModelClass(*args, **kwargs)
for name, param in model.named_parameters():
if name in weights_mapping: # 需要预先知道权重映射关系
param.data.copy_(weights_data[weights_mapping[name]])
模型之间的互相转换
pytorch-lightning 和 pytorch
由于 PyTorch Lightning 模型本身就是 PyTorch 模型,因此不存在严格意义上的转换过程。你可以直接通过 LightningModule
中定义的神经网络层来进行保存和加载,就像普通的 PyTorch 模型一样:
# 假设 model 是一个 PyTorch Lightning 模型实例
model = MyLightningModel()
# 保存模型权重
torch.save(model.state_dict(), 'lightning_model.pth')
# 加载到一个新的 PyTorch 模型实例
new_model = MyLightningModel()
new_model.load_state_dict(torch.load('lightning_model.pth'))
# 或者加载到一个普通的 PyTorch Module 实例(假设结构一致)
plain_pytorch_model = MyPlainPytorchModel()
plain_pytorch_model.load_state_dict(torch.load('lightning_model.pth'))
ckpt和safetensors
转换后的模型在stable-diffussion-webui中使用过没有问题,不知道有没有错误,或者没转换成功
import torch
import os
import safetensors
from typing import Dict, List, Optional, Set, Tuple
from safetensors.torch import _find_shared_tensors, _is_complete, load_file, save_file
def ckpt2safetensors():
loaded = torch.load('v1-5-pruned-emaonly.ckpt')
if "state_dict" in loaded:
loaded = loaded["state_dict"]
safetensors.torch.save_file(loaded, 'v1-5-pruned-emaonly.safetensors')
def st2ckpt():
# 加载 .safetensors 文件
data = safetensors.torch.load_file('v1-5-pruned-emaonly.safetensors.bk')
data["state_dict"] = data
# 将数据保存为 .ckpt 文件
torch.save(data, os.path.splitext('v1-5-pruned-emaonly.safetensors')[0] + '.ckpt')