大模型中 .safetensors 文件、.ckpt文件和.pth以及.bin文件区别、加载和保存以及转换方式

目录

模型格式介绍

加载以及保存

- 加载.safetensors文件:

- 保存/加载.pth文件:

- 保存/加载.ckpt文件:

- 处理.bin文件:

模型之间的互相转换

pytorch-lightning 和 pytorch

ckpt和safetensors


模型格式介绍

在大型深度学习模型的上下文中,.safetensors.bin 和 .pth ckpt 文件的用途和区别如下:

  1. .safetensors 文件

    • 这是由 Hugging Face 推出的一种新型安全模型存储格式,特别关注模型安全性、隐私保护和快速加载。
    • 它仅包含模型的权重参数,而不包括执行代码,这样可以减少模型文件大小,提高加载速度。
    • 加载方式:使用 Hugging Face 提供的相关API来加载 .safetensors 文件,例如 safetensors.torch.load_file() 函数。
  2. ckpt文件

    • ckpt 文件是 PyTorch Lightning 框架采用的模型存储格式,它不仅包含了模型参数,还包括优化器状态以及可能的训练元数据信息,使得用户可以无缝地恢复训练或执行推理。
  3. .bin 文件

    • 通常是一种通用的二进制格式文件,它可以用来存储任意类型的数据。
    • 在机器学习领域,.bin 文件有时用于存储模型权重或其他二进制数据,但并不特指PyTorch的官方标准格式。
    • 对于PyTorch而言,如果用户自己选择将模型权重以二进制格式保存,可能会使用 .bin 扩展名,加载时需要自定义逻辑读取和应用这些权重到模型结构中。
  4. .pth 文件

    • 是 PyTorch 中用于保存模型状态的标准格式。
    • 主要用于保存模型的 state_dict,包含了模型的所有可学习参数,或者整个模型(包括结构和参数)。
    • 加载方式:使用 PyTorch 的 torch.load() 函数直接加载 .pth 文件,并通过调用 model.load_state_dict() 将加载的字典应用于模型实例。

总结起来:

  • .safetensors 侧重于安全性和效率,适合于那些希望快速部署且对安全有较高要求的场景,尤其在Hugging Face生态中。
  • .ckpt 文件是 PyTorch Lightning 框架采用的模型存储格式,它不仅包含了模型参数,还包括优化器状态以及可能的训练元数据信息,使得用户可以无缝地恢复训练或执行推理。
  • .bin 文件不是标准化的模型保存格式,但在某些情况下可用于存储原始二进制权重数据,加载时需额外处理。
  • .pth 是PyTorch的标准模型保存格式,方便模型的持久化和复用,支持完整模型结构和参数的保存与恢复。

加载以及保存

加载.safetensors文件

# 用SDXL举例
import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "/home/bino/svul/models/sdxl/sdxl_lightning_2step_unet.safetensors" # Use the correct ckpt for your step setting!

# Load model.
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(ckpt, device="cuda"))
# unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")

# Ensure sampler uses "trailing" timesteps.
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")

# Ensure using the same inference steps as the loaded model and CFG set to 0.
pipe("A girl smiling", num_inference_steps=4, guidance_scale=0).images[0].save("output.png")

保存/加载.pth文件

 # 保存模型状态字典
 torch.save(model.state_dict(), "model.pth")

 # 加载模型状态字典到已有模型结构中
 model = TheModelClass(*args, **kwargs)
 model.load_state_dict(torch.load("model.pth"))

 # 或者保存整个模型,包括结构
 torch.save(model, "model.pth")

 # 加载整个模型
 model = torch.load("model.pth", map_location=device)

保存/加载.ckpt文件

import pytorch_lightning as pl

# 定义一个 PyTorch Lightning 训练模块
class MyLightningModel(pl.LightningModule):
   def __init__(self):
       super().__init__()
       self.linear_layer = nn.Linear(10, 1)
       self.loss_function = nn.MSELoss()

   def forward(self, inputs):
       return self.linear_layer(inputs)

   def training_step(self, batch, batch_idx):
       features, targets = batch
       predictions = self(features)
       loss = self.loss_function(predictions, targets)
       self.log('train_loss', loss)
       return loss

# 初始化 PyTorch Lightning 模型
lightning_model = MyLightningModel()

# 配置 ModelCheckpoint 回调以定期保存最佳模型至 .ckpt 文件
checkpoint_callback = pl.callbacks.ModelCheckpoint(
   monitor='val_loss',
   filename='best-model-{epoch:02d}-{val_loss:.2f}',
   save_top_k=3,
   mode='min'
)

# 创建训练器并启动模型训练
trainer = pl.Trainer(
   callbacks=[checkpoint_callback],
   max_epochs=10
)
trainer.fit(lightning_model)

# 从 .ckpt 文件加载最优模型权重
best_model = MyLightningModel.load_from_checkpoint(checkpoint_path='best-model.ckpt')

# 使用加载的 .ckpt 文件中的模型进行预测
sample_input = torch.randn(1, 10)
predicted_output = best_model(sample_input)
print(predicted_output)

在此示例中,我们首先定义了一个 PyTorch Lightning 模块,该模块集成了模型训练的逻辑。然后,我们配置了 ModelCheckpoint 回调函数,在训练过程中按照验证损失自动保存最佳模型至 .ckpt 文件。接着,我们展示了如何加载 .ckpt 文件中的最优模型权重,并利用加载后的模型对随机输入数据进行预测,同样输出预测结果。值得注意的是,由于 .ckpt 文件完整记录了训练状态,它在实际应用中常被用于模型微调和进一步训练。

处理.bin文件

如果.bin文件是纯二进制权重文件,加载时需要知道模型结构并且手动将权重加载到对应的层中,例如:

 # 假设已经从.bin文件中读取到了模型权重数据
 weights_data = load_binary_weights("weights.bin")

 # 手动初始化模型并加载权重
 model = TheModelClass(*args, **kwargs)
 for name, param in model.named_parameters():
     if name in weights_mapping:  # 需要预先知道权重映射关系
         param.data.copy_(weights_data[weights_mapping[name]])

模型之间的互相转换

pytorch-lightning 和 pytorch

由于 PyTorch Lightning 模型本身就是 PyTorch 模型,因此不存在严格意义上的转换过程。你可以直接通过 LightningModule 中定义的神经网络层来进行保存和加载,就像普通的 PyTorch 模型一样:

# 假设 model 是一个 PyTorch Lightning 模型实例
model = MyLightningModel()

# 保存模型权重
torch.save(model.state_dict(), 'lightning_model.pth')

# 加载到一个新的 PyTorch 模型实例
new_model = MyLightningModel()
new_model.load_state_dict(torch.load('lightning_model.pth'))

# 或者加载到一个普通的 PyTorch Module 实例(假设结构一致)
plain_pytorch_model = MyPlainPytorchModel()
plain_pytorch_model.load_state_dict(torch.load('lightning_model.pth'))

ckpt和safetensors

转换后的模型在stable-diffussion-webui中使用过没有问题,不知道有没有错误,或者没转换成功

import torch
import os
import safetensors
from typing import Dict, List, Optional, Set, Tuple
from safetensors.torch import _find_shared_tensors, _is_complete, load_file, save_file

def ckpt2safetensors():
    loaded = torch.load('v1-5-pruned-emaonly.ckpt')
    if "state_dict" in loaded:
        loaded = loaded["state_dict"]
    safetensors.torch.save_file(loaded, 'v1-5-pruned-emaonly.safetensors')

def st2ckpt():
    # 加载 .safetensors 文件
    data = safetensors.torch.load_file('v1-5-pruned-emaonly.safetensors.bk')
    data["state_dict"] = data
    # 将数据保存为 .ckpt 文件
    torch.save(data, os.path.splitext('v1-5-pruned-emaonly.safetensors')[0] + '.ckpt')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

telllong

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值