Poj1741[Tree]题解--点分治||Treap

【链接】
poj1741

【题目大意】
给你一棵树,对于这课树有n个顶点,定义dist(u,v)= 节点u和v之间的最小距离。再给你一个数k,使dist(u,v)<=k为一个有效对数,计算对于给定树有效的对数

【解题报告】
此题就是Treap的启发式合并和点分治的裸题,不用多说贴代码

Treap:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int maxn=10005,maxm=20005;
int n,m,tot,ans,lnk[maxn],w[maxm],son[maxm],nxt[maxm];
struct Treap
{
    Treap* son[2];
    int x,s,w,ran;
    int Cmp(int k) {if (k<x) return 0; if (k>x) return 1; return -1;}
    void Updata() {s=son[0]->s+son[1]->s+w;}
}a[maxn*6],*Null=a,*ro[maxn];
void Add(int x,int y,int z)
{
    w[++tot]=z; son[tot]=y; nxt[tot]=lnk[x]; lnk[x]=tot;
}
inline int Read()
{
    int res=0;
    char ch=getchar();
    while (ch<'0'||ch>'9') ch=getchar();
    while (ch>='0'&&ch<='9') res=res*10+ch-48,ch=getchar();
    return res;
}
void Turn(Treap* &k,int d)
{
    Treap* t=k->son[d]; k->son[d]=t->son[d^1]; t->son[d^1]=k;
    t->s=k->s; k->Updata(); k=t;
}
void New(Treap* &k,int x,int p)
{
    ++tot; k=&a[tot]; k->s=k->w=p; k->x=x; k->ran=rand(); k->son[0]=k->son[1]=Null;
}
void Insert(Treap* &k,int x,int p)
{
    if (k==Null) {New(k,x,p); return;}
    int d=k->Cmp(x); k->s+=p;
    if (d<0) k->w+=p;
     else
      {
        Insert(k->son[d],x,p);
        if (k->son[d]->ran<k->ran) Turn(k,d);
      }
}
int Ask(Treap* k,int x)
{
    if (k==Null) return 0;
    int d=k->Cmp(x);
    if (d<0) return k->son[0]->s+k->w;
     else if (d) return k->son[0]->s+k->w+Ask(k->son[1],x);
    return Ask(k->son[0],x);
}
void Join(Treap* &k1,Treap* k2)
{
    if (k2==Null) return;
    Insert(k1,k2->x,k2->w);
    Join(k1,k2->son[0]); Join(k1,k2->son[1]);
}
int Count(Treap* k1,Treap* k2,int x)
{
    if (k2==Null) return 0;
    return k2->w*Ask(k1,x-k2->x)+Count(k1,k2->son[0],x)+Count(k1,k2->son[1],x);
}
void Dfs(int x,int dep,int fa)
{
    for (int j=lnk[x]; j; j=nxt[j])
     if (son[j]!=fa)
      {
        Dfs(son[j],dep+w[j],x);
        if (ro[x]->s<ro[son[j]]->s) swap(ro[x],ro[son[j]]);
        ans+=Count(ro[x],ro[son[j]],2*dep+m); Join(ro[x],ro[son[j]]);
      }
    ans+=Ask(ro[x],dep+m);
    Insert(ro[x],dep,1);
}
void Work()
{
    memset(lnk,0,sizeof(lnk)); tot=0;
    for (int i=1; i<=n; i++) ro[i]=Null;
    for (int i=1,x,y,z; i<n; i++) {x=Read();y=Read();z=Read(); Add(x,y,z); Add(y,x,z);}
    tot=ans=0; Dfs(1,0,0);
    printf("%d\n",ans);
    n=Read(); m=Read();
}
int main()
{
    n=Read(); m=Read();
    while (n||m) Work();
    return 0;
}

点分治:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=10005,maxm=20005,INF=((1<<30)-1)*2+1;
int n,m,tot,rot,ans,nn,p[maxn],f[maxn],f_son[maxn],dep[maxn],lnk[maxn],son[maxm],nxt[maxm],w[maxm];
bool vis[maxn];
inline int read_()
{
    int sum=0;
    char ch=getchar();
    while (ch<'0'||ch>'9') ch=getchar();
    while (ch>='0'&&ch<='9') sum=sum*10+ch-48,ch=getchar();
    return sum;
}
void add_(int x,int y,int z)
{
    w[++tot]=z; son[tot]=y; nxt[tot]=lnk[x]; lnk[x]=tot;
}
void getrot(int x,int fa)
{
    f_son[x]=1; f[x]=0;
    for (int j=lnk[x]; j; j=nxt[j])
     if (!vis[son[j]]&&son[j]!=fa)
      {
        getrot(son[j],x);
        f_son[x]+=f_son[son[j]];
        f[x]=max(f[x],f_son[son[j]]);
      }
    f[x]=max(f[x],nn-f_son[x]);
    if (f[x]<f[rot]) rot=x;
}
void getdep(int x,int fa)
{
    dep[++dep[0]]=p[x];
    for (int j=lnk[x]; j; j=nxt[j])
     if (!vis[son[j]]&&son[j]!=fa)
      {
        p[son[j]]=p[x]+w[j];
        getdep(son[j],x);
      }
}
int cal(int x,int v)
{
    p[x]=v; dep[0]=0;
    getdep(x,0);
    sort(dep+1,dep+1+dep[0]);
    int L=1,R=dep[0],sum=0;
    while (L<R)
     if (dep[L]+dep[R]<=m) {sum+=R-L; L++;}  else R--;
    return sum;
}
void solve(int x)
{
    vis[x]=1; ans+=cal(x,0);
    for (int j=lnk[x]; j; j=nxt[j])
     if (!vis[son[j]])
      {
        ans-=cal(son[j],w[j]);
        nn=f_son[son[j]]; rot=0;
        getrot(son[j],0);
        solve(rot);
      }
}
void work_()
{
    memset(vis,0,sizeof(vis));
    memset(lnk,0,sizeof(lnk));
    tot=0;
    for (int i=1; i<n; i++)
    {
        int x=read_(),y=read_(),z=read_();
        add_(x,y,z); add_(y,x,z);
    }
    nn=n; f[0]=INF; rot=ans=0;
    getrot(1,0);
    solve(rot);
    printf("%d\n",ans);
    n=read_(); m=read_();
}
int main()
{
    n=read_(); m=read_();
    while (n||m) work_();
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值