二分新姿势--倍增法

本文介绍了二分查找的另一种实现方式——倍增法,通过二进制思想巧妙地进行区间判断,避免了传统分治法的反复折半操作。详细阐述了倍增法的原理和步骤,并提供了相应的代码示例。
摘要由CSDN通过智能技术生成

Q:二分不是用分治法的吗?
A:其实二分不只可以用分治法,倍增法也行哦。

【分治法】
先简略讲下分治法,分治法实现二分其实就是用决策区间折半,再判断是否可行,以修正区间的范围。

Ps:博主写的二分是求最小值的(求最大值自己yy一下就行了)

代码如下:

while (L<=R)
{
    int mid=(R-L>>1)+L;
    if (Check(mid)) R=mid-1; else L=mid+1; 
}

答案: L

【倍增法】
倍增法用了二进制的思想巧妙实现了二分。
对于区间[L,R],定义 logR

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值