算法2.1 分治与倍增

本文详细介绍了分治算法的定义、应用,包括归并排序的思路、代码及复杂度分析,以及逆序对和树状数组在解逆序对问题中的应用。此外,还探讨了CDQ分治解决二维、三维偏序问题的方法。在倍增算法部分,讲解了如何利用倍增法求解最近公共祖先(LCA)和区间最值查询(RMQ),并给出了相应的代码实现。
摘要由CSDN通过智能技术生成

分治

定义

分治算法的核心思想就是“分而治之”。

大概的流程可以分为三步:分解 -> 解决 -> 合并。

  1. 分解原问题为结构相同的子问题。
  2. 分解到某个容易求解的边界之后,进行递归求解。
  3. 将子问题的解合并成原问题的解。

分治法能解决的问题一般有如下特征:

  • 该问题的规模缩小到一定的程度就可以容易地解决。
  • 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质,利用该问题分解出的子问题的解可以合并为该问题的解。
  • 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。

快速幂

详见其他博客

归并排序

思想

  1. 分治法: 将 a [ l , r ] a[l, r] a[l,r] 分解成 a [ l , m i d ] , a [ m i d + 1 , r ] a[l, mid], a[mid + 1, r] a[l,mid],a[mid+1,r] 两部分
  2. 调用 M e r g e S o r t ( l , m i d ) MergeSort(l, mid) MergeSort(l,mid) M e r g e S o r t ( m i d + 1 , r ) MergeSort(mid + 1, r) MergeSort(mid+1,r),将这两个函数各自排好序
  3. 二路归并:将两个有序数组合并成一个大的有序数组,覆盖 a [ l , r ] a[l, r] a[l,r]
    1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
    2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
    3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
    4. 重复步骤3直到某一指针超出序列尾
    5. 将另一序列剩下的所有元素直接复制到合并序列尾

图解

归并排序图解

代码

void MergeSort(int l, int r)
{
   
	if(l == r)
		return ;
	MergeSort(l, (l + r) / 2);
	MergeSort((l + r) / 2 + 1, r);
	int i = l, j = (l + r) / 2 + 1, cnt = l;
	int b[n];
	while(i <= (l + r) / 2 && j <= r)
	{
   
		if(a[i] < a[j])
			b[cnt++] = a[i++];
		else
			b[cnt++] = a[j++];
	}
	while(i <= (l + r) / 2)
		b[cnt++] = a[i++];
	while(j <= r)
		b[cnt++] = a[j++];
	for(; l <= r; l++)
		a[l] = b[l];
}

分析

  • 归并排序是稳定的排序;
  • 时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),空间复杂度为 O ( n ) O(n) O(n)

逆序对

对于给定的一段正整数序列,逆序对就是序列中 a i > a j a_i > a_j ai>aj i < j i < j i<j的有序对。

//求逆序对的个数
void mergesort(int l, int r)
{
   
	if(l == r)	
		return;
	mergesort(l, (l + r) / 2);
	mergesort((l + r) / 2 + 1, r);
	int i = l, j = (l + r) / 2 + 1, cnt = l;
	int b[n];
	while(i <= (l + r) / 2 && j <= r)
	{
   
		if(a[j] < a[i])
		{
   
			s += (l + r) / 2 - i + 1;
			b[cnt++] = a[j++];
		}
		else	
			b[cnt++] = a[i++];
	}
	while(i <= (l + r) / 2)
		b[cnt++] = a[i++];
	while(j <= r)
		b[cnt++] = a[j++];
	for(int i = l; i <= r; i++)
		a[i] = b[i];
}

树状数组解逆序对

注意数各不相同!


int main()
{
   
	scanf("%d", &n);
	for(int i = 1; i <= n; i++)
	{
   
		scanf("%d",&a);
		node[i].id = i;
		node[i].data = a;
	}
	sort(node + 1, node + 1 + n);
	for(int i = 1;i <= n; i++)
	{
   
		add(node[i].id, 1);  //次数+1
		ans += i - sum(node[i].id); //得到之前有多少个比你大的数
	}
	printf("%d", ans);
	return 0;
}

CDQ分治

CDQ分治最早是被陈丹琦引入国内的,所以就叫这个名字了。

CDQ分治的有点在于可以顶替复杂的数据结构,缺点是必须离线处理。

这里我们讲的CDQ分治单指 CDQ 分治解决多维偏序问题

多维偏序是指有多个维度的大小关系,找到符合这个关系的数对个数。

二维偏序

给定一个序列,对于每个元素有 ( a , b ) (a,b) (a,b) 两个属性,问有多少个数对 ( i , j ) (i,j) (i,j) 满足 a i < a j , b i < b j a_i < a_j,b_i < b_j ai<aj,bi<bj

bool cmp(node q, node w)
{
   
	return q.x < w.x;
}

struct node
{
   
	int x, y;
}a[100005];

void mergesort(int l, int r)
{
   
	if(l >= r)
		return;
	int mid = (l + r) / 2;
	mergesort(l , mid);
	mergesort(mid + 1, r);
	int ll = l, rr = r, cnt = l, b[n];
	while(ll <= mid && rr <= r)
	{
   
		if(a[ll].y < a[rr].y)
		{
   
			ans += ll - l + 1;
			b[cnt++] = a[ll++].y
		}	
		else
			b[cnt++] = a[rr++].y; 
	}
	while(ll <= mid) 
		b[cnt++] = a[ll++].y;
	while(rr <= r)
		b[cnt++] = a[rr++].y;
	for(int i = l; i <= r; i++)
		a[i].y = b[i];
}

int n, ans;

int main()
{
   
	scanf("%d", &n);
	for(int i = 1; i <= n; i++)
		scanf("%d%d", &a[i].x, &a[i].y);
	sort(a + 1, a + n + 1, cmp);//一维排序
	mergesort(1, n);//二维归并排序
	
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值