分治与倍增
分治
定义
分治算法的核心思想就是“分而治之”。
大概的流程可以分为三步:分解 -> 解决 -> 合并。
- 分解原问题为结构相同的子问题。
- 分解到某个容易求解的边界之后,进行递归求解。
- 将子问题的解合并成原问题的解。
分治法能解决的问题一般有如下特征:
- 该问题的规模缩小到一定的程度就可以容易地解决。
- 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质,利用该问题分解出的子问题的解可以合并为该问题的解。
- 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
快速幂
详见其他博客
归并排序
思想
- 分治法: 将 a [ l , r ] a[l, r] a[l,r] 分解成 a [ l , m i d ] , a [ m i d + 1 , r ] a[l, mid], a[mid + 1, r] a[l,mid],a[mid+1,r] 两部分
- 调用 M e r g e S o r t ( l , m i d ) MergeSort(l, mid) MergeSort(l,mid) 和 M e r g e S o r t ( m i d + 1 , r ) MergeSort(mid + 1, r) MergeSort(mid+1,r),将这两个函数各自排好序
- 二路归并:将两个有序数组合并成一个大的有序数组,覆盖 a [ l , r ] a[l, r] a[l,r]
- 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
- 设定两个指针,最初位置分别为两个已经排序序列的起始位置
- 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
- 重复步骤3直到某一指针超出序列尾
- 将另一序列剩下的所有元素直接复制到合并序列尾
图解
代码
void MergeSort(int l, int r)
{
if(l == r)
return ;
MergeSort(l, (l + r) / 2);
MergeSort((l + r) / 2 + 1, r);
int i = l, j = (l + r) / 2 + 1, cnt = l;
int b[n];
while(i <= (l + r) / 2 && j <= r)
{
if(a[i] < a[j])
b[cnt++] = a[i++];
else
b[cnt++] = a[j++];
}
while(i <= (l + r) / 2)
b[cnt++] = a[i++];
while(j <= r)
b[cnt++] = a[j++];
for(; l <= r; l++)
a[l] = b[l];
}
分析
- 归并排序是稳定的排序;
- 时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),空间复杂度为 O ( n ) O(n) O(n)。
逆序对
对于给定的一段正整数序列,逆序对就是序列中 a i > a j a_i > a_j ai>aj 且 i < j i < j i<j的有序对。
//求逆序对的个数
void mergesort(int l, int r)
{
if(l == r)
return;
mergesort(l, (l + r) / 2);
mergesort((l + r) / 2 + 1, r);
int i = l, j = (l + r) / 2 + 1, cnt = l;
int b[n];
while(i <= (l + r) / 2 && j <= r)
{
if(a[j] < a[i])
{
s += (l + r) / 2 - i + 1;
b[cnt++] = a[j++];
}
else
b[cnt++] = a[i++];
}
while(i <= (l + r) / 2)
b[cnt++] = a[i++];
while(j <= r)
b[cnt++] = a[j++];
for(int i = l; i <= r; i++)
a[i] = b[i];
}
树状数组解逆序对
注意数各不相同!
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; i++)
{
scanf("%d",&a);
node[i].id = i;
node[i].data = a;
}
sort(node + 1, node + 1 + n);
for(int i = 1;i <= n; i++)
{
add(node[i].id, 1); //次数+1
ans += i - sum(node[i].id); //得到之前有多少个比你大的数
}
printf("%d", ans);
return 0;
}
CDQ分治
CDQ分治最早是被陈丹琦引入国内的,所以就叫这个名字了。
CDQ分治的有点在于可以顶替复杂的数据结构,缺点是必须离线处理。
这里我们讲的CDQ分治单指 CDQ 分治解决多维偏序问题。
多维偏序是指有多个维度的大小关系,找到符合这个关系的数对个数。
二维偏序
给定一个序列,对于每个元素有 ( a , b ) (a,b) (a,b) 两个属性,问有多少个数对 ( i , j ) (i,j) (i,j) 满足 a i < a j , b i < b j a_i < a_j,b_i < b_j ai<aj,bi<bj。
bool cmp(node q, node w)
{
return q.x < w.x;
}
struct node
{
int x, y;
}a[100005];
void mergesort(int l, int r)
{
if(l >= r)
return;
int mid = (l + r) / 2;
mergesort(l , mid);
mergesort(mid + 1, r);
int ll = l, rr = r, cnt = l, b[n];
while(ll <= mid && rr <= r)
{
if(a[ll].y < a[rr].y)
{
ans += ll - l + 1;
b[cnt++] = a[ll++].y
}
else
b[cnt++] = a[rr++].y;
}
while(ll <= mid)
b[cnt++] = a[ll++].y;
while(rr <= r)
b[cnt++] = a[rr++].y;
for(int i = l; i <= r; i++)
a[i].y = b[i];
}
int n, ans;
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; i++)
scanf("%d%d", &a[i].x, &a[i].y);
sort(a + 1, a + n + 1, cmp);//一维排序
mergesort(1, n);//二维归并排序