【链接】
bzoj1090
【解题报告】
区间DP
定义 f[i][j] 表示 [i,j] 区间的最小值。
不难得出 f[i][j]=min(r−i+1,f[i][k]+f[k][j])(l<=k<=r)
如果 [i,j] 可以折叠,那么 f[i][j]=min(f[i][j],f[i][k]+2+自然数的长度)
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=105;
int f[maxn][maxn];
char s[maxn];
int Getlen(int x) {int len=0; while (x) len++,x/=10; return len;}
bool Check(int l,int r,int L,int R)
{
if ((R-L+1)%(r-l+1)!=0) return 0;
for (int i=L; i<=R; i++)
if (s[i]!=s[(i-L)%(r-l+1)+l]) return 0;
return 1;
}
int DP(int l,int r)
{
if (l==r) return 1;
if (f[l][r]) return f[l][r];
f[l][r]=r-l+1;
for (int i=l; i<=r; i++)
{
int L=DP(l,i),R=DP(i+1,r);
f[l][r]=min(f[l][r],L+R);
if (Check(l,i,i+1,r)) f[l][r]=min(f[l][r],L+2+Getlen((r-i)/(i-l+1)+1));
}
return f[l][r];
}
int main()
{
freopen("1090.in","r",stdin);
freopen("1090.out","w",stdout);
scanf("%s",s+1);
memset(f,0,sizeof(f));
printf("%d",DP(1,strlen(s+1)));
return 0;
}