BZOJ1090(SCOI2003)[字符串折叠]--区间DP

这篇博客介绍了如何解决BZOJ1090问题,重点探讨了区间动态规划(DP)的应用。博主定义了f[i][j]表示[i,j]区间内的最小值,并给出了状态转移方程。文章还讨论了当[i,j]可以折叠时,如何计算f[i][j]的值。" 104685300,9196550,美赛写作攻略:2020官方Summary模板与论文模板解析,"['数学建模竞赛', '学术写作', '模板资源']
摘要由CSDN通过智能技术生成

【链接】
bzoj1090

【解题报告】

区间DP

定义 f[i][j] 表示 [i,j] 区间的最小值。

不难得出 f[i][j]=min(ri+1,f[i][k]+f[k][j])(l<=k<=r)

如果 [i,j] 可以折叠,那么 f[i][j]=min(f[i][j],f[i][k]+2+)

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=105;
int f[maxn][maxn];
char s[maxn];
int Getlen(int x) {int len=0; while (x) len++,x/=10; return len;}
bool Check(int l,int r,int L,int R)
{
    if ((R-L+1)%(r-l+1)!=0) return 0;
    for (int i=L; i<=R; i++)
     if (s[i]!=s[(i-L)%(r-l+1)+l]) return 0;
    return 1;
}
int DP(int l,int r)
{
    if (l==r) return 1;
    if (f[l][r]) return f[l][r];
    f[l][r]=r-l+1;
    for (int i=l; i<=r; i++)
    {
        int L=DP(l,i),R=DP(i+1,r);
        f[l][r]=min(f[l][r],L+R);
        if (Check(l,i,i+1,r)) f[l][r]=min(f[l][r],L+2+Getlen((r-i)/(i-l+1)+1));
    }
    return f[l][r];
}
int main()
{
    freopen("1090.in","r",stdin);
    freopen("1090.out","w",stdout);
    scanf("%s",s+1);
    memset(f,0,sizeof(f));
    printf("%d",DP(1,strlen(s+1)));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值