题目概述
安排n个婚礼是这n个婚礼没有时间相交。
每个婚礼有2个安排时间段。
解题思路
不难看出这题是一道求2-sat任意解问题。
如果时间段
i,j
相交,则有
i−>j′
j−>i′
如果看不懂上面这句话 点这里
接下来用tarjan缩点是毋庸置疑的,因为如果你选择了
i
则所有与
接下来就是如何求答案的问题。
网上有介绍刷拓扑然后染色。
但是Manchery dalao的blog中介绍,完全不需要以上两种操作。
什么!!!
整个人顿时凌乱了,稍微思考一下发现染色听着高端其实是一个十分鸡肋的过程,但是对于用tarjan求出的scc的顺序代替拓扑序迟迟不能理解,非常混乱。
这时Manchery dalao过来叫我冷静一下,画个图看下。
以下过程读者脑补吧(我记不得了QAQ),再稍微用逻辑关系推一下就可以发现这个神奇的操作。
这样代码的实现难度减少了很多,跪烂Manchery dalao
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=2005,maxm=2000005;
struct jz{
int s,t;
}a[maxn];
int n,tot,lnk[maxn],son[maxm],nxt[maxm],ans[maxn];
int dfn[maxn],low[maxn],scc[maxn],top,s[maxn],time,G;
bool ins[maxn];
inline int _read(){
int num=0;char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9') num=num*10+ch-48,ch=getchar();
return num;
}
void add(int x,int y){
nxt[++tot]=lnk[x];lnk[x]=tot;son[tot]=y;
}
bool check(int x,int y){
if (a[y].s<a[x].s) swap(y,x);
return a[y].s<a[x].t;
}
void tarjan(int x){
dfn[x]=++time;low[x]=time;
s[++top]=x;ins[x]=1;
for (int j=lnk[x];j;j=nxt[j])
if (!dfn[son[j]]){tarjan(son[j]);low[x]=min(low[x],low[son[j]]);}
else if (ins[son[j]]) low[x]=min(low[x],dfn[son[j]]);
if (dfn[x]==low[x]){
G++;
while(s[top]!=x) scc[s[top]]=G,ins[s[top--]]=0;
scc[x]=G;ins[s[top--]]=0;
}
}
int main(){
freopen("exam.in","r",stdin);
freopen("exam.out","w",stdout);
n=_read();
for (int i=0;i<n;i++){
int h1=_read(),m1=_read(),h2=_read(),m2=_read(),d=_read();
int s=h1*60+m1,t=h2*60+m2;
a[2*i].s=s;a[2*i].t=s+d;
a[2*i^1].s=t-d;a[2*i^1].t=t;
}
for (int i=0;i<2*n;i++)
for (int j=0;j<i;j++)
if ((j/2!=i/2)&&check(i,j)) add(i,j^1),add(j,i^1);
for (int i=0;i<2*n;i++) if (!dfn[i]) tarjan(i);
for (int i=0;i<n;i++)
if (scc[2*i]==scc[2*i^1]){printf("NO\n");return 0;}
else if (scc[2*i]<scc[2*i^1]) ans[i]=2*i;else ans[i]=2*i^1;
printf("YES\n");
for (int i=0;i<n;i++)
printf("%02d:%02d %02d:%02d\n",a[ans[i]].s/60,a[ans[i]].s%60,a[ans[i]].t/60,a[ans[i]].t%60);
return 0;
}