题目梗概
例如F(6) = 6 % 1 + 6 % 2 + 6 % 3 + 6 % 4 + 6 % 5 + 6 % 6 = 0 + 0 + 0 + 2 + 1 + 0 = 3。
给出n,计算F(n), 由于结果很大,输出Mod 1000000007的结果即可。
解题思路
x%y运算其实可以看成 x−x/y∗y ,这里的除是整除。
那么对于整除x等于固定值的数我们可以一起统计,这些数显然是一个区间,我们可以假设固定值为K。
那么就是K*一段区间的和,显然可以O(1)求。
这样的段显然只有 n√ 个。
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
const int tt=1000000007;
LL n,m,pd,ans;
void work(LL L,LL R,int k){
if (L>m) return;
if (R>m) R=m;
ans=(ans+n%tt*((R-L+1)%tt))%tt;
if ((L+R)%2==0) ans=(ans-(L+R)/2%tt*((R-L+1)%tt)%tt*k)%tt;
else ans=(ans-(L+R)%tt*((R-L+1)/2%tt)%tt*k)%tt;
ans=(ans+tt)%tt;
}
int main(){
scanf("%lld",&n);m=n;pd=sqrt(n);
for (int i=1;i<=pd;i++) work(n/(i+1)+1,n/i,i);
for (int i=1;i<=n/(pd+1);i++)
if (i<=m) ans=(ans+n%i)%tt;
if (m>n) ans=(ans+n%tt*((m-n)%tt))%tt;
printf("%lld\n",ans);
return 0;
}